BackgroundHyaluronidases belong to a class of enzymes that degrade, predominantly, hyaluronan. These enzymes are known to be involved in physiological and pathological processes, such as tumor growth, infiltration and angiogenesis, but their exact role in tumor promotion or suppression is not clear yet. Advanced colorectal cancer is associated with elevated amounts of hyaluronan of varying size. The aim of the present study was therefore to illuminate the importance of hyaluronidases in colon carcinoma progression.MethodsThe patients' samples (macroscopically normal and cancerous) were subjected to sequential extraction with PBS, 4 M GdnHCl and 4 M GdnHCl - 1% Triton X-100. The presence of the various hyaluronidases in the extracts was examined by zymography and western blotting. Their expression was also examined by RT-PCR.ResultsAmong hyaluronidases examined, Hyal-1, -2, -3 and PH-20 were detected. Their activity was higher in cancerous samples. Hyal-1 and Hyal-2 were overexpressed in cancerous samples, especially in advanced stages of cancer. Both isoforms were mainly extracted with PBS. Hyal-3 was observed only in the third extract of advanced stages of cancer. PH-20 was abundant in all three extracts of all stages of cancer. The expression of only Hyal-1 and PH-20 was verified by RT-PCR.ConclusionA high association of hyaluronidases in colorectal cancer was observed. Each hyaluronidase presented different tissue distribution, which indicated the implication of certain isoforms in certain cancer stages. The results provided new evidence on the mechanisms involved in the progression of colorectal cancer.
ADAMTSs are a family of secreted proteinases that share the metalloproteinase domain with matrix metalloproteinases (MMPs). By acting on a large panel of extracellular substrates, they control several cell functions such as fusion, adhesion, proliferation and migration. Through their thrombospondin motifs they also possess anti-angiogenic properties. We investigated whether ADAMTSs participate in colorectal cancer progression and invasion. Their expression was investigated at both mRNA and protein levels. Using RT-PCR, the expression of ADAMTS-1, -4, -5 and ADAMTS-20 was estimated in colorectal tumors of different cancer stage and anatomic site and 3 cell lines of different aggressiveness. An overexpression of ADAMTS-4 and -5 was observed, especially in tissue samples, whereas ADAMTS-1 and -20 were found to be down-regulated. Western blot analysis further supported the RT-PCR findings, revealing in addition the degradation of ADAMTS-1 and -20 in cancer. In situ expression and localization of ADAMTS-1, -4, -5 and -20 was also investigated by immunohistochemical analysis. Our data suggest a positive correlation between ADAMTS-4 and -5 expression and cancer progression, in contrast with the anti-angiogenic members of the family, ADAMTS-1 and -20, which were found to be down-regulated. Our findings support the notion that overexpression of ADAMTS-4 and ADAMTS-5 in colorectal cancer might be a possible invasive mechanism of cancer cells in order to degrade proteoglycans of ECM.
Abstract. Glycosaminoglycans undergo significant structural alterations in cancer, namely in terms of their sulfation pattern and hydrodynamic size. Numerous studies have focused on this issue, and have demonstrated that glycosaminoglycans play a crucial role in cancer growth and invasion. However, the majority of the enzymes involved in glycosaminoglycan alterations have yet to be examined in detail. The present study focused on the expression of chondroitin-synthesizing enzymes in colorectal cancer. Specimens from healthy controls and cancer patients were subjected to RT-PCR analysis after RNA isolation, and to Western blotting after sequential extraction. The results indicated that chondroitin polymerizing factor and glucuronyltransferase gradually increased with cancer stage, and were expressed at much higher levels in adenomas compared to adjacent normal tissue. The opposite profile was obtained for chondroitin synthase I. Chondroitin synthase III was present at low levels in all the samples examined; however, its expression was higher in the samples from the cancer patients than in those from the healthy controls. It can therefore be concluded that, among the various factors regulating the structure of glycosaminoglycans in cancer, the differential expression of chondroitin-synthesizing enzymes is of the most significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.