Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability 1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability, and this problem has not been addressed yet. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behaviour of the programs, the invariants are obtained completely ignoring the probabilistic aspect (i.e., the invariants are obtained considering all behaviours with no information about the probability).
Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability 1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability, and this problem has not been addressed yet. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behaviour of the programs, the invariants are obtained completely ignoring the probabilistic aspect (i.e., the invariants are obtained considering all behaviours with no information about the probability).In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We formally define the notion of stochastic invariants, which are constraints along with a probability bound that the constraints hold. We introduce a concept of repulsing supermartingales. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1) With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2) repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3) with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs.Along with our conceptual contributions, we establish the following computational results: First, the synthesis of a stochastic invariant which supports some ranking supermartingale and at the same time admits a repulsing supermartingale can be achieved via reduction to the existential first-order theory of reals, which generalizes existing results from the non-probabilistic setting. Second, given a program with "strict invariants" (e.g., obtained via abstract interpretation) and a stochastic invariant, we can check in polynomial time whether there exists a linear repulsing supermartingale w.r.t. the stochastic invariant (via reduction to LP). We also present experimental evaluation of our approach on academic examples.
In two-player games on graphs, the players move a token through a graph to produce a finite or infinite path, which determines the qualitative winner or quantitative payoff of the game. We study bidding games in which the players bid for the right to move the token. Several bidding rules were studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the "bank" rather than the other player. Taxman bidding spans the spectrum between Richman and poorman bidding. They are parameterized by a constant τ ∈ [0, 1]: portion τ of the winning bid is paid to the other player, and portion 1 − τ to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games. It was previously shown that both Richman and poorman infinite-duration games with qualitative objectives reduce to reachability games, and we show a similar result here. Our most interesting results concern quantitative taxman games, namely mean-payoff games, where poorman and Richman bidding differ significantly. A central quantity in these games is the ratio between the two players' initial budgets. While in poorman mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding, the payoff depends only on the structure of the game. In both games the optimal payoffs can be found using (different) probabilistic connections with random-turn games in which in each turn, instead of bidding, a coin is tossed to determine which player moves. While the value with Richman bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff taxman games that is based on a probabilistic connection: the value of a taxman bidding game with parameter τ and initial ratio r, equals the value of a random-turn game that uses a coin with bias F (τ, r) = r+τ •(1−r) 1+τ. Thus, we show that Richman bidding is the exception; namely, for every τ < 1, the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the previous proof techniques for both Richman and poorman bidding. 2012 ACM Subject Classification Theory of computation → Solution concepts in game theory; Theory of computation → Formal languages and automata theory Keywords and phrases Bidding games, Richman bidding, poorman bidding, taxman bidding, meanpayoff games, random-turn games
We consider the problem of formally verifying almost-sure (a.s.) asymptotic stability in discrete-time nonlinear stochastic control systems. While verifying stability in deterministic control systems is extensively studied in the literature, verifying stability in stochastic control systems is an open problem. The few existing works on this topic either consider only specialized forms of stochasticity or make restrictive assumptions on the system, rendering them inapplicable to learning algorithms with neural network policies. In this work, we present an approach for general nonlinear stochastic control problems with two novel aspects: (a) instead of classical stochastic extensions of Lyapunov functions, we use ranking supermartingales (RSMs) to certify a.s. asymptotic stability, and (b) we present a method for learning neural network RSMs. We prove that our approach guarantees a.s. asymptotic stability of the system and provides the first method to obtain bounds on the stabilization time, which stochastic Lyapunov functions do not. Finally, we validate our approach experimentally on a set of nonlinear stochastic reinforcement learning environments with neural network policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.