Galunisertib is a drug that deserves to be further investigated for the treatment of liver fibrosis. Inhibition of SMAD2 phosphorylation is probably a central mechanism of action. In addition, blocking the production and maturation of collagens and promoting their degradation are related to the antifibrotic action of galunisertib.
Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an
ex vivo
model using precision‐cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex‐determining region Y‐box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia‐inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our
ex vivo
model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces.
Conclusion:
Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The
ex vivo
spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.
Two important signaling pathways in liver fibrosis are the PDGF- and TGFβ pathway and compounds inhibiting these pathways are currently developed as antifibrotic drugs. Testing antifibrotic drugs requires large numbers of animal experiments with high discomfort. Therefore, a method to study these drugs ex vivo was developed using precision-cut liver slices from fibrotic rat livers (fPCLS), representing an ex vivo model with a multicellular fibrotic environment. We characterized the fibrotic process in fPCLS from rat livers after 3 weeks of bile duct ligation (BDL) during incubation and tested compounds predominantly inhibiting the TGFβ pathway (perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone) and PDGF pathway (imatinib, sorafenib and sunitinib). Gene expression of heat shock protein 47 (Hsp47), α smooth muscle actin (αSma) and pro-collagen 1A1 (Pcol1A1) and protein expression of collagens were determined. During 48 hours of incubation, the fibrosis process continued in control fPCLS as judged by the increased gene expression of the three fibrosis markers, and the protein expression of collagen 1, mature fibrillar collagen and total collagen. Most PDGF-inhibitors and TGFβ-inhibitors significantly inhibited the increase in gene expression of Hsp47, αSma and Pcol1A1. Protein expression of collagen 1 was significantly reduced by all PDGF-inhibitors and TGFβ-inhibitors, while total collagen was decreased by rosmarinic acid and tetrandrine only. However, fibrillar collagen expression was not changed by any of the drugs. In conclusion, rat fPCLS can be used as a functional ex vivo model of established liver fibrosis to test antifibrotic compounds inhibiting the PDGF- and TGFβ signalling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.