In this study we report on the hit optimization of substituted 3,5-diaryl-pyrazin-2(1H)-ones toward potent and effective platelet-derived growth factor receptor (PDGF-R) β-inhibitors. Originally, the 3,5-diarylpyrazin-2-one core was derived from the marine sponge alkaloid family of hamacanthins. In our first series compound 2 was discovered as a promising hit showing strong activity against PDGF-Rβ in the kinase assay (IC 50 = 0.5 μM). Furthermore, 2 was shown to be selective for PDGF-Rβ in a panel of 24 therapeutically relevant protein kinases. Molecular modeling studies on a PDGF-Rβ homology model using prediction of water thermodynamics suggested an optimization strategy for the 3,5-diaryl-pyrazin-2-ones as DFG-in binders by using a phenolic OH function to replace a structural water molecule in the ATP binding site. Indeed, we identified compound 38 as a highly potent inhibitor with an IC 50 value of 0.02 μM in a PDGF-Rβ enzymatic assay also showing activity against PDGF-R dependent cancer cells.
The goal of photopharmacology is to develop photoswitchable enzyme modulators as tunable (pro-)drugs that can be spatially and temporally controlled by light. In this context, the tyrosine kinase inhibitor axitinib, which contains a photosensitive stilbene-like moiety that allows for E/Z isomerization, is of interest. Axitinib is an approved drug that targets the vascular endothelial growth factor receptor 2 (VEGFR2) and is licensed for second-line therapy of renal cell carcinoma. The photoinduced E/Z isomerization of axitinib has been investigated to explore if its inhibitory effect can be turned "on" and "off", as triggered by light. Under controlled light conditions, (Z)-axitinib is 43 times less active than that of the E isomer in an VEGFR2 assay. Furthermore, it was proven that kinase activity in human umbilical vein cells (HUVECs) was decreased by (E)-axitinib, but only weakly affected by (Z)-axitinib. By irradiating (Z)-axitinib in vitro with UV light (λ=385 nm), it is possible to switch it almost quantitatively into the E isomer and to completely restore the biological activity of (E)-axitinib. However, switching the biological activity off from (E)- to (Z)-axitinib was not possible in aqueous solution due to a competing irreversible [2+2]-photocycloaddition, which yielded a biologically inactive axitinib dimer.
In this study, we aimed at the application of the concept of photopharmacology to the approved vascular endothelial growth factor receptor (VEGFR)-2 kinase inhibitor axitinib. In a previous study, we found out that the photoisomerization of axitinib’s stilbene-like double bond is unidirectional in aqueous solution due to a competing irreversible [2+2]-cycloaddition. Therefore, we next set out to azologize axitinib by means of incorporating azobenzenes as well as diazocine moieties as photoresponsive elements. Conceptually, diazocines (bridged azobenzenes) show favorable photoswitching properties compared to standard azobenzenes because the thermodynamically stable Z-isomer usually is bioinactive, and back isomerization from the bioactive E-isomer occurs thermally. Here, we report on the development of different sulfur–diazocines and carbon–diazocines attached to the axitinib pharmacophore that allow switching the VEGFR-2 activity reversibly. For the best sulfur–diazocine, we could verify in a VEGFR-2 kinase assay that the Z-isomer is biologically inactive (IC50 >> 10,000 nM), while significant VEGFR-2 inhibition can be observed after irradiation with blue light (405 nm), resulting in an IC50 value of 214 nM. In summary, we could successfully develop reversibly photoswitchable kinase inhibitors that exhibit more than 40-fold differences in biological activities upon irradiation. Moreover, we demonstrate the potential advantage of diazocine photoswitches over standard azobenzenes.
In this study, we report on the modification of a 3,4-diaryl-isoxazole-based CK1 inhibitor with chiral pyrrolidine scaffolds to develop potent and selective CK1 inhibitors. The pharmacophore of the lead structure was extended towards the ribose pocket of the adenosine triphosphate (ATP) binding site driven by structure-based drug design. For an upscale compatible multigram synthesis of the functionalized pyrrolidine scaffolds, we used a chiral pool synthetic route starting from methionine. Biological evaluation of key compounds in kinase and cellular assays revealed significant effects of the scaffolds towards activity and selectivity, however, the absolute configuration of the chiral moieties only exhibited a limited effect on inhibitory activity. X-ray crystallographic analysis of ligand-CK1δ complexes confirmed the expected binding mode of the 3,4-diaryl-isoxazole inhibitors. Surprisingly, the original compounds underwent spontaneous Pictet-Spengler cyclization with traces of formaldehyde during the co-crystallization process to form highly potent new ligands. Our data suggests chiral “ribose-like” pyrrolidine scaffolds have interesting potential for modifications of pharmacologically active compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.