In the past few years, using microwave energy to heat and drive chemical reactions has become increasingly popular in the medicinal chemistry community. First described 20 years ago, this non-classical heating method has matured from a laboratory curiosity to an established technique that is heavily used in academia and industry. One of the many advantages of using rapid 'microwave flash heating' for chemical synthesis is the dramatic reduction in reaction times--from days and hours to minutes and seconds. As will be discussed here, there are good reasons why many pharmaceutical companies are incorporating microwave chemistry into their drug discovery efforts.
Direct and rapid heating by microwave irradiation in combination with sealed vessel processing in many cases enables reactions to be carried out in a fraction of the time generally required using conventional conditions. This makes microwave chemistry an ideal tool for rapid reaction scouting and optimization of conditions, allowing very rapid progress through hypotheses-experiment-results iterations. The speed at which multiple variations of reaction conditions can be performed allows a morning discussion of "What should we try?" to become an after-lunch discussion of "What were the results?" Not surprisingly, therefore, many scientists both in academia and industry have turned to microwave synthesis as a front-line methodology for their projects. In this review, more than 220 published examples of microwave-assisted synthetic organic transformations from the 2004 to 2008 literature are discussed. An additional ca. 500 reaction schemes are presented in the Electronic Supplementary Material, providing the reader with an overall number of ca. 930 references in this fast-moving and exciting field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.