Molecules with weak ground-state absorption that form strongly absorbing excited states can be used in optical limiters, which can protect sensors or human eyes from optical damage. Phthalocyanine complexes bearing heavy atoms or paramagnetic groups or in solvents containing heavy atoms show optical limiting enhanced by excited triplet-state absorption. A nonhomogeneous distribution of indium tetra(
tert
-butyl)phthalocyanine chloride along the beam path substantially enhances the excited-state absorption, yielding an optical limiter with a linear transmittance of 0.70 that can attenuate 8-nanosecond, 532-nanometer laser pulses by factors of up to 540.
CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform.
CMOS‐compatible nonlinear optics platforms with negligible nonlinear losses and high nonlinearity are of great merit. Silicon, silicon nitride and Hydex glass have made significant headway in nonlinear optical signal processing, though none of these platforms possesses the highly sought after combination of high nonlinearity and negligible nonlinear losses. In this manuscript, we present a nonlinear optics platform based on silicon‐rich nitride, deposited at a low temperature of 250°C compatible with back‐end CMOS processing. The silicon‐rich nitride is designed and engineered in composition to have a bandgap of 2.05 eV, such that the two‐photon absorption edge is well below 1.55 μm. The designed and developed waveguides have a nonlinear parameter of 550 W−1/m, 500 times larger than that in silicon nitride waveguides, while at the same time not possessing two‐photon and free‐carrier losses. Using 500‐fs pulses, we generate supercontinuum exceeding 0.6 of an octave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.