The rapid escalation of pandemic health threats associated with the novel, pathogenic SARS-CoV-2 coronavirus poses unprecedented challenges as proven effective vaccines and drugs have yet to be produced. Refractory hypoxemia and myocardial injury have been observed as two of the major causes of fatality in COVID-19 patients. SARS-CoV-2 spike (S) protein binding to broadly expressed CD147 receptors on erythrocytes causes oxidative hemolysis that may result in refractory hypoxemia and myocardial injury. Both of these life-threatening conditions are further exacerbated by imbalance in ACE2 from spike (S) protein receptor binding. Dysregulation in the CD147-cyclophilin A signaling pathway, together with altered calcium signaling from SARS-CoV-2 ion channel activities, may contribute to hypercoagulation, thrombosis, and cardiac remodeling resulting in heart failure. Melatonin is an ancient pleiotropic molecule with recognized antioxidant properties that is essential for the protection of erythrocytes from oxidative hemolysis. Found in erythrocytes, melatonin can reverse hemolytic anemia, normalize heme synthesis, restore lymphocytes and platelet counts, and reduce vessel permeability during an acute hemolytic crisis by maintaining intracellular calcium homeostasis and reduction of oxidative stress. In acute hypoxic conditions, melatonin is cardioprotective via blunting of cardiopulmonary response to hypoxia and suppressing hypoxia pathways. Melatonin normalizes endothelial-dependent nitric oxide production to prevent multiple organ damage from hypercoagulability, thrombosis, and hypertension associated with oxidative hemolysis and ACE2 deficiency, protecting cardiomyocytes from hypertrophy. This review discusses the full potential of melatonin as a safe and effective therapeutic intervention for the prevention and attenuation of hemoglobinopathies, refractory hypoxemia and myocardial injury during critical COVID-19 infections.
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid–liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of “viral factories” by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Currently available anti-viral drugs may be useful in reducing the viral load but are not providing the necessary physiological effects to reduce the SARS-CoV-2 complications efficiently. Treatments that provide better clinical outcomes are urgently needed. Vitamin C (ascorbic acid, AA) is an essential nutrient with many biological roles that have been proven to play an important part in immune function; it serves as an antioxidant, an anti-viral, and exerts anti-thrombotic effects among many other physiological benefits. Research has proven that AA at pharmacological doses can be beneficial to patients with acute respiratory distress syndrome (ARDS) and other respiratory illnesses, including sepsis. In addition, High-Dose Intravenous Vitamin C (HDIVC) has proven to be effective in patients with different viral diseases, such as influenza, chikungunya, Zika, and dengue. Moreover, HDIVC has been demonstrated to be very safe. Regarding COVID-19, vitamin C can suppress the cytokine storm, reduce thrombotic complications, and diminish alveolar and vascular damage, among other benefits. Due to these reasons, the use of HDIVC should be seriously considered in complicated COVID-19 patients. In this article, we will emphasize vitamin C’s multiple roles in the most prominent pathophysiological processes presented by the COVID-19 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.