Increasing numbers of outbreaks caused by enterohemorrhagic Escherichia coli (EHEC) are associated with the consumption of contaminated fresh produce. The contamination of the plants may occur directly on the field via irrigation water, surface water, manure or fecal contamination. Suggesting a low infectious dose of 10 to 10 cells, internalization of EHEC into plant tissue presents a serious public health threat. Therefore, the ability of EHEC O157:H7 strain Sakai to adhere to and internalize into root tissues of the lamb's lettuce Valerianella locusta was investigated under the environmental conditions of a greenhouse. Moreover, the influence of the two adherence and colonization associated genes hcpA and iha was surveyed regarding their role for attachment and invasion. Upon soil contamination, the number of root-internalized cells of EHEC O157:H7 strain Sakai exceeded 10 cfu/g roots. Deletion of one or both of the adherence factor genes did not alter the overall attachment of EHEC O157:H7 strain Sakai to the roots, but significantly reduced the numbers of internalized bacteria by a factor of between 10 and 30, indicating their importance for invasion of EHEC O157:H7 strain Sakai into plant roots. This study identified intrinsic bacterial factors that play a crucial role during the internalization of EHEC O157:H7 strain Sakai into the roots of Valerianella locusta grown under the growth conditions in a greenhouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.