Ocean temperatures in most parts of the world are increasing and are expected to continue to rise during the 21st century. A major challenge to ecologists and marine resource managers is to understand and predict how these global changes will affect species and ecosystems at local scales where temperature more directly affects biological responses and species interactions. Here, we investigate historical variability in regional sea surface temperature in two large heavily exploited marine ecosystems and compare these variations with expected rates of temperature change for the 21st century. We use four of the world's longest calibrated daily time series to show that trends in surface temperatures in the North and Baltic Seas now exceed those at any time since instrumented measurements began in 1861 and 1880. Temperatures in summer since 1985 have increased at nearly triple the global warming rate, which is expected to occur during the 21st century and summer temperatures have risen two to five times faster than those in other seasons. These warm temperatures and rates of change are due partly to an increase in the frequency of extremely warm years. The recent warming event is exceeding the ability of local species to adapt and is consequently leading to major changes in the structure, function and services of these ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.