NK cells eliminate virus-infected and tumor cells by releasing cytotoxic granules containing granzyme B (GrzB) or by engaging death receptors that initiate caspase cascades. The orchestrated interplay between both cell death pathways remains poorly defined. Here we simultaneously measure the activities of GrzB and caspase-8 in tumor cells upon contact with human NK cells. We observed that NK cells switch from inducing a fast GrzB-mediated cell death in their first killing events to a slow death receptor–mediated killing during subsequent tumor cell encounters. Target cell contact reduced intracellular GrzB and perforin and increased surface-CD95L in NK cells over time, showing how the switch in cytotoxicity pathways is controlled. Without perforin, NK cells were unable to perform GrzB-mediated serial killing and only killed once via death receptors. In contrast, the absence of CD95 on tumor targets did not impair GrzB-mediated serial killing. This demonstrates that GrzB and death receptor–mediated cytotoxicity are differentially regulated during NK cell serial killing.
The integrin LFA-1 is essential for efficient activation and for cytotoxicity of NK cells because it initiates the assembly of the immunological synapse and mediates firm adhesion to the target. LFA-1 is also needed to polarize the cytotoxic machinery of the NK cell toward the target cell. The binding affinity and avidity of integrins can be regulated via inside-out signals from other receptors. In this article, we investigate the signals necessary to activate LFA-1 in human NK cells. Our data show that LFA-1 has a low ligand-binding activity in resting human NK cells, but it can be stimulated by triggering activating receptors, such as 2B4 or CD16, or by coactivation of different receptor combinations. Short-term stimulation of freshly isolated NK cells with cytokines, such as IL-15, IL-12, or IL-18, does not activate LFA-1 but increases the responsiveness of the cells to subsequent receptor stimulation. Different NK cell subsets vary in their ability to induce LFA-1 binding activity after activating receptor stimulation. Interestingly, the NK cell subsets that are more mature and possess higher cytotoxic potential also show the highest activation of LFA-1, which correlated with the expression of the small calcium-binding protein S100A4. Our data suggest that regulation of LFA-1 is one reason for the different activity of NK cells during differentiation.
Significance
Human adenoviruses encode Early region 3 (E3) proteins that manipulate the host immune response to establish an infection or to persist longer. To date, only a few E3 functions from a single adenovirus species (C) have been characterized, all of which act directly on infected cells. Here we describe a secreted E3 protein that is uniquely expressed by species D adenoviruses. This protein targets noninfected leukocytes using a cell surface phosphatase as a receptor. We provide evidence that this interaction suppresses leukocyte activation and effector functions, implying that species D adenoviruses can affect the host distant from the site of infection.
Natural killer (NK) cells are effector cells of the immune system whose activation is carefully regulated by the interplay of signals from activating and inhibitory receptors. Signals from activating receptors induce phosphorylation of the guanine nucleotide exchange factor Vav1, whereas those from inhibitory receptors lead to the dephosphorylation of Vav1 by the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). Here, we used mathematical modeling and experiments with NK cells to gain insight into this integration of positive and negative signals at a molecular level. Our data showed a switch-like regulation of Vav1 phosphorylation, the extent of which correlated with the cytotoxic activity of NK cells. Comparison of our experimental results with the predictions that we derived from an ensemble of 72 mathematical models showed that a physical association between Src family kinases and activating receptors on NK cells was essential to generate the cytotoxic response. Our data support a central role for Vav1 in determining the cytotoxic activity of NK cells and provide insight into the molecular mechanism of the integration of positive and negative signals during lymphocyte activation.
NKG2D is an activating receptor expressed on all human NK cells and a subset of T cells. In cytolytic conjugates between NK cells and target cells expressing its ligand MHC class I chain-related gene A, NKG2D accumulates at the immunological synapse with GM1-rich microdomains. Furthermore, NKG2D is specifically recruited to detergent-resistant membrane fractions upon ligation. However, in the presence of a strong inhibitory stimulus, NKG2D-mediated cytotoxicity can be intercepted, and recruitment of NKG2D to the immunological synapse and detergent-resistant membrane fractions is blocked. Also, downstream phosphorylation of Vav-1 triggered by NKG2D ligation is circumvented by coengaging inhibitory receptors. Thus, we propose that one way in which inhibitory signaling can control NKG2D-mediated activation is by blocking its recruitment to GM1-rich membrane domains. The accumulation of activating NK cell receptors in GM1-rich microdomains may provide the necessary platform from which stimulatory signals can proceed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.