Nanostructured iron(III) oxide deposits are grown by chemical vapor deposition (CVD) at 400-500 °C on Si(100) substrates from Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine), yielding the selective formation of α-Fe2O3 or the scarcely studied ε-Fe2O3 polymorphs under suitably optimized preparative conditions. By using Ti(OPr(i))4 (OPr(i) = iso-propoxy) and water as atomic layer deposition (ALD) precursors, we subsequently functionalized the obtained materials at moderate temperatures (<300 °C) by an ultrathin titanomagnetite (Fe3-xTixO4) overlayer. An extensive multitechnique characterization, aimed at elucidating the system structure, morphology, composition and optical properties, evidenced that the photoactivated hydrophilic and photocatalytic behavior of the synthesized materials is dependent both on iron oxide phase composition and ALD surface modification. The proposed CVD/ALD hybrid synthetic approach candidates itself as a powerful tool for a variety of applications where semiconductor-based nanoarchitectures can benefit from the coupling with an ad hoc surface layer.
In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.
A theoretical study of Gaussian probe beam interaction with thermal waves on the basis of the complex geometrical optics equations is presented. This method of describing probe beam propagation in a nonhomogeneous medium, called the complex ray theory, takes into account the influence of the thermal wave on both amplitude and phase of electric field in the probe Gaussian beam. A comparison between the complex ray theory and previously proposed theories is made. Adequate experimental data confirming the correctness of the presented theory are also given. The least-squares procedure was used in multiparameter fitting the theoretical results to the experimental data and some parameters of the experimental setup were determined. It is proven that the complex ray theory allows correct quantitative interpretation of the data obtained in photodeflection experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.