The development of additive manufacturing techniques has made it possible to produce porous structures with complex geometry with unique properties as potential candidates for energy absorption, heat dissipation, biomedical, and vibration control application. Recently, there has been increased interest in additively manufacturing porous structures based on triply periodic minimal surfaces (TPMS) topology. In this paper, the mechanical properties and energy absorption abilities of cylindrical mapped TPMS structures with shell gyroid unit cells fabricated by selective laser melting (SLM) with 316L stainless steel under compression loading were investigated. Based on the experimental study, it was found that tested structures exhibited two different deformation modes. There is also a relationship between the number and shapes of unit cells in the structure and the elastic modulus, yield strength, plateau stress, and energy absorption. These results can be used to design and manufacture more efficient lightweight parts lattices for energy absorbing applications, e.g., in the field of biomedical and bumpers applications. The deformation mode for each tested sample was also presented on the records obtained from the ARAMIS system.
The article deals with the investigation of geopolymer foams (GFs) synthesized using by-products coming from the (i) screening-, (iv) pyrolysis-, (iii) dust abatement- and (iv) fusion-processes of the secondary aluminum industry. Based on principles of the circular economy to produce new technological materials, the experimental study involves industrial by-products management through the recovery, chemical neutralization, and incorporation of these relatively hazardous waste into the GFs. The geopolymeric matrix, consisting of metakaolin (MK) and silica sand (SA) with a 1:1 wt.% ratio, and chopped carbon fibers (CFs, 1 wt.% MK), was doped with the addition of different aluminum-rich industrial by-products with a percentage from 1 to 10 wt.% MK. The gas (mainly hydrogen) produced during the chemical neutralization of the by-products represents the foaming agents trapped in the geopolymeric structure. Several experimental tests were carried out to characterize the mechanical (flexural, compressive, and Charpy impact strengths) and thermal properties (thermal conductivity, and diffusivity, and specific heat) of the GFs. Results identify GFs with good mechanical and thermal insulation properties, encouraging future researchers to find the best combination (for types and proportions) of the different by-products of the secondary aluminum industry to produce lightweight geopolymer foams. The reuse of these industrial by-products, which according to European Regulations cannot be disposed of in the landfill, also brings together environmental sustainability and safe management of hazardous material in workplaces addressed to the development of new materials.
The DLC coating of samples produced by additive manufacturing with complex shapes is a challenge but also shows the possibility of obtaining a diffusive barrier for biomedical applications. In this study, stochastic porous structures based on Voronoi tessellation were fabricated using binder jetting technology from 316L SS powder and modified using DLC coating. The DLC coating was deposited using the RF PACVD technology. The chamber pressure was 40 Pa with a methane gas flow rate of 60 sccm. The negative bias voltage was 700 V. The deposition time was 5 min. Dimensional analysis was performed using optical microscopy. Surface morphology and topography were evaluated using SEM and confocal microscopy. Raman spectroscopy was used to examine the chemical structure of DLC coating. Finally, the HR TEM was used to evaluate the physicochemical characterization of the DLC coating. The interconnected complex spatial network of the Voronoi structure was accurately duplicated by the binder jetting technology. The obtained substrates were characterized by high roughness (Ra = 6.43 µm). Moreover, the results indicated that the conditions of the RF PACVD process allow for the deposition of the continuous and tightened DLC coating with a thickness from 30 nm to 230 nm and defined the content of Cr2O3 and SiO2.
The aim of the additive manufacturing (AM) is a production of physical objects by adding material layer-by-layer based on virtual geometry developed in the computer system. The main criteria for the division of additive manufacturing methods are the way to apply the layer and the type of construction material. In most projects, the choice of method is a compromise between costs and properties (e.g. physical, chemical or mechanical) of the manufactured object. Currently, AM methods have found application in many areas of life, including industrial design, automotive, aerospace, architecture, jewellery, medicine and veterinary medicine, bringing many innovative and revolutionary solutions. The purpose of this article is to review of the additive production methods and present the potential of medical application.
Triply periodic minimal surfaces (TPMS) are structures inspired by nature with unique properties. Numerous studies confirm the possibility of using TPMS structures for heat dissipation, mass transport, and biomedical and energy absorption applications. In this study, the compressive behavior, overall deformation mode, mechanical properties, and energy absorption ability of Diamond TPMS cylindrical structures produced by selective laser melting of 316L stainless steel powder were investigated. Based on the experimental studies, it was found that tested structures exhibited different cell strut deformation mechanisms (bending-dominated and stretch-dominated) and overall deformation modes (uniform and “layer-by-layer”) depending on structural parameters. Consequently, the structural parameters had an impact on the mechanical properties and the energy absorption ability. The evaluation of basic absorption parameters shows the advantage of bending-dominated Diamond TPMS cylindrical structures in comparison with stretch-dominated Diamond TPMS cylindrical structures. However, their elastic modulus and yield strength were lower. Comparative analysis with the author’s previous work showed a slight advantage for bending-dominated Diamond TPMS cylindrical structures in comparison with Gyroid TPMS cylindrical structures. The results of this research can be used to design and manufacture more efficient, lightweight components for energy absorption applications in the fields of healthcare, transportation, and aerospace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.