In recent years, new products obtained from amaranth seeds have entered the food market including expanded "popping" seeds and fl akes. Lipids and biologically-active substances dissolved in these products are susceptible to changes. Additionally, due to the fact that fat quality has high dietary importance, there is a need to conduct detailed quality and quantity studies on the lipid composition of Amaranthus cruentus.For the samples under analysis, protein, fat, starch and ash content were determined. Fatty acids and sterols were analysed by gas chromatography. The analysis of tocopherols and squalene content was carried out with the application of high-performance liquid chromatography coupled with photodiode array and fl uorescence detectors (HPLC-DAD-FLD).Protein, fat and starch content did not change during seed processing. However in the case of tocopherols, the total tocopherol content was 10.6 mg/100 g for seeds, while in "popping" and in fl akes it was reduced by approximately 35%. The squalene content ranged from 469.96 mg/100 g for seeds to 358.9 mg/100 g for fl akes. No signifi cant differences were observed in the fatty acid profi le of seeds and products, but differences were observed in the sterol content.Unauthenticated Download Date | 5/13/18 12:42 AM
The aim of the research was to characterize bioactive components of unsaponifiable fraction of selected unconventional oils. Nine oils were analyzed as far as the content of tocopherols, squalene, phenolic compounds, and sterols were concerned. Tocopherols and squalene were analyzed by HPLC coupled with diode array detector and fluorescent detector (HPLC-DAD-FLD). The content of sterols in oils was determined by GC coupled with MS (GC-MS). The total amount of phenolic compounds in oils was determined by the colorimetric methods using Folin-Ciocalteau phenol reagent. The examined oils were characterized by differentiated amount of particular forms of tocopherols. The oil obtained from the seeds of amaranth was the richest source of squalene (over 52 mg/g oil). The presence of 22 different compounds of sterols were identified, whereas b-sitosterol was found in the largest amount. Total amount of sterols in the oils ranged from 90 (walnut) to 850 mg/100 g (evening primrose). Significant differentiation of total amount of phenolic compounds was observed in the examined oils. Evening primrose oil showed the highest amount of phenolic compounds (679 mg/kg). The presented results prove that plant oils obtained from nonconventional sources are a potential source of bioactive compounds.
In this study, the influence of encapsulation process conditions on the physical properties and chemical composition of encapsulated pumpkin seed oil was investigated. Four variants of encapsulated oil were prepared: spray-dried nonhomogenized emulsions at the inlet temperatures of 180 and 130°C, spray-dried homogenized emulsion at the inlet temperature of 130°C, and freeze-dried homogenized emulsion. The emulsion was prepared by mixing 10.6% oil with 19.8% wall materials (15.9% maltodextrin + 0.5% guar gum + 3.9% whey protein concentrate) and 69.6% distilled water. The quality of encapsulated pumpkin seed oil was evaluated by encapsulation efficiency, surface oil, total oil and moisture contents, flowing properties, color, and size. Additionally, fatty acid composition, pigment characteristics, and the content of bioactive compounds (tocopherols, squalene, and sterols) were determined. Changes of these components after the encapsulation process in comparison to the control pumpkin seed oil were considered as stability parameters. The highest encapsulation efficiency was obtained by spray-drying at the inlet temperature of 130°C. Generally, the spray-drying process had a positive effect upon the physical parameters of encapsulated pumpkin seed oil but results were dependent on process conditions. The higher inlet temperature generated more surface oil, but capsules obtained at the lower temperature were greater in size and more deformed. Although freeze-drying proceeded at a very low temperature, the powder obtained with this technique was characterized by the highest bioactive compound losses (with the exception of sterols) and the lowest stability. The homogenization process applied before spray-drying affected greater polyunsaturated fatty acid, squalene, and pigment degradation. In conclusion, results of the study showed that the spray-drying non-homogenized emulsion was a more recommendable technique for the encapsulation of pumpkin seed oil because of smaller changes of native compounds and better oxidative stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.