Since about twenty years, following the introduction into therapeutic of news β-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems), a very significant number of new β-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-β-enzymes (IMP, VIM, SPM, GIM types) are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron) and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all β-lactamases because they confer resistance to carbapenems and all the β-lactams (with the exception of aztreonam) and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended -spectrum antibiotics (e.g. cephalosporins and carbapenems), and therefore care must be taken that these drugs are not used unnecessarily.
Objectives In 2015 and 2016 Poland recorded rapid proliferation of New Delhi MBL (NDM)-producing Enterobacterales, with at least 470 and 1780 cases, respectively. We addressed the roles of the Klebsiella pneumoniae ST11 NDM-1 outbreak genotype, already spreading in 2012–14, and of newly imported organisms in this increase. Methods The study included 2136 NDM-positive isolates identified between April 2015 and December 2016, following transfer of patients with K. pneumoniae ST147 NDM-1 from Tunisia to Warsaw in March 2015. The isolates were screened by PCR mapping for variants of blaNDM-carrying Tn125-like elements. Selected isolates were typed by PFGE and MLST. NDM-encoding plasmids were analysed by nuclease S1/hybridization, transfer assays, PCR-based replicon typing and PCR mapping. Results The organisms were mainly K. pneumoniae containing the Tn125A variant of the ST11 epidemic lineage (n = 2094; ∼98%). Their representatives were of the outbreak pulsotype and ST11, and produced NDM-1, encoded by specific IncFII (pKPX-1/pB-3002cz)-like plasmids. The isolates were recovered in 145 healthcare centres in 13/16 administrative regions, predominantly the Warsaw area. The ‘Tunisian’ genotype K. pneumoniae ST147 NDM-1 Tn125F comprised 18 isolates (0.8%) from eight institutions. The remaining 24 isolates, mostly K. pneumoniae and Escherichia coli of diverse STs, produced NDM-1 or NDM-5 specified by various Tn125 derivatives and plasmids. Conclusions The K. pneumoniae ST11 NDM-1 outbreak has dramatically expanded in Poland since 2012, which may bring about a countrywide endemic situation in the near future. In addition, the so-far limited K. pneumoniae ST147 NDM-1 outbreak plus multiple NDM imports from different countries were observed in 2015–16.
An increase in the antibiotic resistance among Enterococcus faecium strains has been observed worldwide. Moreover, this bacteria has the ability to produce several virulence factors and to form biofilm that plays an important role in human infections. This study was designed to compare the antibiotic resistance and the prevalence of genes encoding surface protein (esp), aggregation substance (as), surface adhesin (efaA), collagen adhesin (ace), gelatinase (gelE), and hialuronidase (hyl) between biofilm-producing and non-producing E. faecium strains. Therefore, ninety E. faecium clinical isolates were tested for biofilm-forming ability, and then were assigned to two groups: biofilm-positive (BIO(+), n =70) and biofilm-negative (BIO(-), n = 20). Comparison of these groups showed that BIO(+) isolates were resistant to β-lactams, whereas 10% of BIO(-) strains were susceptible to ampicillin (statistically significant difference, p = 0.007) and 5% to imipenem. Linezolid and tigecycline were the only antibiotics active against all tested isolates. Analysis of the virulence factors revealed that ace, efaA, and gelE genes occurred more frequently in BIO(-) strains (ace in 50% BIO(+) vs. 75% BIO(-); efaA 44.3% vs. 85%; gelE 2.9% vs. 15%, respectively), while hyl gene appeared more frequently in BIO(+) isolates (87.1% BIO(+) vs. 65% BIO(-)). These differences were significant (p < 0.05). We concluded that BIO(+) strains were more resistant to antibiotics than BIO(-) strains, but interestingly, BIO(-) isolates were characterized by possession of higher virulence capabilities.
An increase in the antibiotic resistance among members of the Enterobacteriaceae family has been observed worldwide. Multidrug-resistant Gram-negative rods are increasingly reported. The treatment of infections caused by Escherichia coli and other Enterobacteriaceae has become an important clinical problem associated with reduced therapeutic possibilities. Antimicrobial carbapenems are considered the last line of defense against multidrug-resistant Gram-negative bacteria. Unfortunately, an increase of carbapenem resistance due to the production of Klebsiella pneumoniae carbapenemase (KPC) enzymes has been observed. In this study we describe the ability of E. coli to produce carbapenemase enzymes based on the results of the combination disc assay with boronic acid performed according to guidelines established by the European Community on Antimicrobial Susceptibility Testing (EUCAST) and the biochemical Carba NP test. Moreover, we evaluated the presence of genes responsible for the production of carbapenemases (bla KPC, bla VIM, bla IMP, bla OXA-48) and genes encoding other β-lactamases (bla SHV, bla TEM, bla CTX-M) among E. coli isolate. The tested isolate of E. coli that possessed the bla KPC-3 and bla TEM-34 genes was identified. The tested strain exhibited susceptibility to colistin (0.38 μg/mL) and tigecycline (1 μg/mL). This is the first detection of bla KPC-3 in an E. coli ST479 in Poland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.