Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
Summary
The health of the Western honey bee is threatened by a global epidemic of deformed wing virus (DWV) infections driven by the ectoparasitic mite Varroa destructor acting as mechanical and biological virus vector. Three different variants of DWV, DWV‐A, ‐B and ‐C exist. Virulence differences between these variants and their relation to V. destructor are still controversially discussed. We performed laboratory experiments to analyze the virulence of DWV directly isolated from crippled bees (DWVP0) or after one additional passage in bee pupae (DWVP1). We demonstrated that DWVP0 was more virulent than DWVP1 for pupae, when pupal mortality was taken as virulence marker, and for adult bees, when neurotropism and cognitive impairment were taken as virulence markers. Phylogenetic analysis supported that DWV exists as quasispecies and showed that DWVP0 clustered with DWV‐B and DWVP1 with DWV‐A when the phylogeny was based on the master sequences of the RNA‐dependent RNA polymerase but not so when it was based on the VP3 region master sequences. We propose that switching of DWV between the bee and the mite host is accompanied by changes in viral sequence, tissue tropism and virulence and that the RNA‐dependent RNA polymerase is involved in determining host range and virulence.
Memory retrieval initiates two consolidation processes: consolidation of an extinction memory and reconsolidation of the acquisition memory. The strength of the consolidation processes depends on both the strength of the acquisition memory and the strength of retrieval trials and is correlated with its sensitivity to inhibition. We demonstrate that in the honeybee (Apis mellifera), memory retrieval of a consolidated appetitive olfactory memory leads to both consolidation processes, depending on the number of retrieval trials. Spontaneous recovery from extinction is induced by many (five), but not by few (one and two), retrieval trials. Spontaneous recovery is blocked by emetine, an inhibitor of protein synthesis. We conclude that reconsolidation of the acquisition memory underlies spontaneous recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.