The aim of the present study was to explore the relation of controlled dietary acrylamide (AA) intake with the excretion of AA-related urinary mercapturic acids (MA), N-acetyl-S-(carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA). Excretion kinetics of these short-term exposure biomarkers were monitored under strictly controlled conditions within a duplicate diet human intervention study. One study arm (group A, n = 6) ingested AA via coffee (0.15–0.17 µg/kg bw) on day 6 and in a meal containing an upper exposure level of AA (14.1–15.9 μg/kg bw) on day 10. The other arm (group B) was on AA minimized diet (washout, 0.05–0.06 µg/kg bw) throughout the whole 13-day study period. On day 6, these volunteers ingested 13C3D3-AA (1 μg/kg bw). In both arms, urinary MA excretion was continuously monitored and blood samples were taken to determine hemoglobin adducts. Ingestion of four cups of coffee resulted in a slightly enhanced short-term biomarker response within the background range of group B. At the end of the 13-day washout period, group B excreted an AAMA baseline level of 0.14 ± 0.10 µmol/d although AA intake was only about 0.06 µmol/d. This sustained over-proportional AAMA background suggested an endogenous AA baseline exposure level of 0.3–0.4 µg/kg bw/d. The excretion of 13C3D3-AA was practically complete within 72–96 h which rules out delayed release of AA (or any other MA precursor) from deep body compartments. The results provide compelling support for the hypothesis of a sustained endogenous AA formation in the human body.
The dominant anthocyanins in blackcurrant are delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside. Data on their absorption and distribution in the human body are limited. Therefore, we performed a human pilot study on five healthy male volunteers consuming a blackcurrant (Ribes nigrum L.) extract. The rutinosides and their degradation products gallic acid and protocatechuic acid were determined in plasma and urine. The rutinosides' concentrations peaked in both plasma and urine samples within 2 h of extract ingestion. The recoveries of delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside from urine samples were 0.040 ± 0.011% and 0.048 ± 0.016%, respectively, over a 48 h period. Protocatechuic acid concentration increased significantly after ingestion of the blackcurrant extract. Our results show that after ingestion of a blackcurrant extract containing delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, significant quantities of biologically active compounds circulated in the plasma and were excreted via urine. Furthermore, these results contribute to the understanding of anthocyanin metabolism in humans.
Repeated coffee consumption was associated with reduced background DNA strand breakage, clearly measurable as early as 2 h after first intake resulting in a cumulative overall reduction by about one-third of the baseline value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.