Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsa knock-in (KI) mice expressing solely the secreted ectodomain APPsa. Here, we generated double mutants (APPsa-DM) by crossing APPsa-KI mice onto an APLP2-deficient background and show that APPsa rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsa-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsa-DM muscle showed fragmented postsynaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsa-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA A receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.
The amyloid precursor protein (APP) plays a key role in the pathogenesis of Alzheimer's disease (AD), as proteolytical cleavage of APP gives rise to the β-amyloid peptide which is deposited in the brains of Alzheimer patients. During the past years, intense research efforts have been directed at elucidating the physiological function(s) of APP and the question of whether a perturbation of these functions contributes to AD pathogenesis. Indeed, a growing body of evidence has accumulated supporting a role of APP and the two closely related homologues APLP1 and APLP2 in various aspects of nervous system development and function, in particular, for synapse formation and function. This review summarizes recent insights into the in vivo role of the APP gene family from mice lacking individual or combinations of APP family members, with particular emphasis on recently generated knockin mice to examine the in vivo relevance of distinct functional domains.
Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsa knock-in (KI) mice expressing solely the secreted ectodomain APPsa. Here, we generated double mutants (APPsa-DM) by crossing APPsa-KI mice onto an APLP2-deficient background and show that APPsa rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsa-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsa-DM muscle showed fragmented postsynaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsa-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA A receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.
BackgroundThe β-amyloid precursor protein (APP) and the related β-amyloid precursor-like proteins (APLPs) undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that Aβ accumulation is a central trigger for Alzheimer's disease, the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPsα ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The γ-secretase-generated APP intracellular domain (AICD) functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial.ResultsTo gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators, we performed DNA microarray transcriptome profiling of prefrontal cortex of adult wild-type (WT), APP knockout (APP-/-), APLP2 knockout (APLP2-/-) and APPsα knockin mice (APPα/α) expressing solely the secreted APPsα ectodomain. Biological pathways affected by the lack of APP family members included neurogenesis, transcription, and kinase activity. Comparative analysis of transcriptome changes between mutant and wild-type mice, followed by qPCR validation, identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity-related genes that were both down-regulated in knockout cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including Bace1, Kai1, Gsk3b, p53, Tip60, and Vglut2. Only Egfr was slightly up-regulated in APLP2-/- mice. Comparison of APP-/- and APPα/α with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2-/- on different genetic backgrounds revealed that background-related transcriptome changes may dominate over changes due to the knockout of a single gene.ConclusionShared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.