Language and certain aspects of motor control are typically served by the left hemisphere, whereas visuospatial and attentional control are lateralized to the right. Here a (visuo)motor tracing task was used to identify hemispheric lateralization beyond the general, contralateral organization of the motor system. Functional magnetic resonance imaging (fMRI) was applied in 40 male right-handers (19-30 yrs) during line tracing with dominant and nondominant hand, with and without visual guidance. Results revealed a network of areas activating more in the right than left hemisphere, irrespective of the effector. Inferior portions of frontal gyrus and parietal lobe overlapped largely with a previously described ventral attention network responding to unexpected or behaviourally relevant stimuli. This demonstrates a hitherto unreported functionality of this circuit that also seems to activate when spatial information is continuously exploited to adapt motor behaviour. Second, activation of left dorsal premotor and postcentral regions during tracing with the nondominant left hand was more pronounced than that in their right hemisphere homologues during tracing with the dominant right hand. These activation asymmetries of motor areas ipsilateral to the moving hand could not be explained by asymmetries in skill performance, the degree of handedness, or interhemispheric interactions. The latter was measured by a double-pulse transcranial magnetic stimulation paradigm, whereby a conditioning stimulus was applied over one hemisphere and a test stimulus over the other. We propose that the left premotor areas contain action representations strongly related to movement implementation which are also accessed during movements performed with the left body side.
Three to 6 months after an acute coronary syndrome (ACS), cognitive impairment is observed in more than 30 % of the patients, mainly in executive functioning. The aim of this study was to investigate, using multimodal MRI, cerebral anatomo-functional substratum of executive dysfunction. Thirty-three patients were recruited 4 ± 1 months after a first ACS. Executive functions were evaluated with the Trail-Making-Test-B (TMTB) at baseline (ie 4 ± 1 months after ACS) and 6 months later (ie 10 ± 1 months after ACS). Using both time-points, we identified 3 groups of patients according to normative data based on age, gender and education level: 15 'cognitively normal' patients without impairment at each follow-up, 10 'transient impaired' patients with an impairment only at baseline and 8 'impairing' patients with an impairment only at follow-up. We explored, in the whole-brain, the structural integrity using Voxel-Based Morphometry and Tract-Based Spatial Statistics and the resting-state functional connectivity using Network-Based Statistics. No structural difference was observed between impaired and cognitively normal patients. At the functional level, compared to the 'cognitively normal' group, the 'transient impaired' patients presented an increased functional connectivity in a network centered on middle-orbito-frontal regions, whereas the 'impairing' patients presented only a non-significant decrease of functional connectivity. Executive dysfunction in ACS patients is associated to functional but no structural characteristics, particularly to an increased functional connectivity in cognitive networks in transient impaired patients. Further studies with larger sample size are needed to confirm these results and to determine if these patients could be at higher risk for developing permanent cognitive disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.