Heavy metal accumulation into bivalve soft tissues has received increasing interest in recent years with respect to biomonitoring of environmental change including pollution. To a lesser extent, accretion of elements from the environment into bivalve hard structures (shells) has been investigated, although the importance of the shells as environmental archives has been acknowledged. Here we report element distribution within consecutive growth bands in the shells of the Antarctic soft shell clam Laternula elliptica, which is currently exposed to vast environmental change in Antarctic Peninsula coastal environments that undergo rapid climate warming. We performed a high spatial resolution analysis for Al, Fe, Mn, Cu, Pb and U in the shell umbo, by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Element ratios within the umbo did not resemble either the ratios in the surrounding seawater, the sedimenting material in Potter Cove, or even the Earth's crust basal composition. Mn and Cu were preferentially incorporated into the umbo. A strong decrease of element accretion with time could be related to lifetime respiration mass (R) of the animals. This indicates element accretion into the umbo and shell matrix to be largely a function of animal ecophysiology and life history, and these effects need to be considered in the context of potential usefulness of L. elliptica shells as environmental archives.
Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-Time of Flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to ~103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L -1 range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICPQuadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L -1 while between 0.5 and 5 ng L -1 accuracy and precision are element dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.