Summary Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.
SUMMARY Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole exome sequencing and DNA copy number analyses, and 196 HCC also by DNA methylation, RNA, miRNA, and proteomic expression. DNA sequencing and mutation analysis identified significantly mutated genes including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or down-regulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.
are employees of Genentech, Inc, a member of the Roche group, and own Roche stock. C. E. Brightling is a consultant with fees paid to his institution from Genentech, Inc, and Regeneron; received research grants and was a consultant with fees paid to his institution from AstraZeneca, GlaxoSmithKline, Sanofi, Boehringer Ingelheim, Roche/Genentech, Chiesi, 4D Pharma, Mologics, and Novartis.Background: The IL-33/ST2 pathway is linked with asthma susceptibility. Inhaled allergens, pollutants, and respiratory viruses, which trigger asthma exacerbations, induce release of IL-33, an epithelial-derived ''alarmin.'' Astegolimab, a human IgG 2 mAb, selectively inhibits the IL-33 receptor, ST2. Approved biologic therapies for severe asthma mainly benefit patients with elevated blood eosinophils (type 2-high), but limited options are available for patients with low blood eosinophils (type 2-low). Inhibiting IL-33 signaling may target pathogenic pathways in a wider spectrum of asthmatics. Objectives: This study evaluated astegolimab efficacy and safety in patients with severe asthma. Methods: This double-blind, placebo-controlled, dose-ranging study (ZENYATTA [A Study to Assess the Efficacy and Safety of MSTT1041A in Participants With Uncontrolled Severe Asthma]) randomized 502 adults with severe asthma to subcutaneous placebo or 70-mg, 210-mg, or 490-mg doses of astegolimab every 4 weeks. The primary endpoint was the annualized asthma exacerbation rate (AER) at week 54. Enrollment caps ensured 30 patients who were eosinophil-high (> _300 cells/mL) and 95 patients who were eosinophil-low (<300 cells/mL) per arm. Results: Overall, adjusted AER reductions relative to placebo were 43% (P 5 .005), 22% (P 5 .18), and 37% (P 5 .01) for 490mg, 210-mg, and 70-mg doses of astegolimab, respectively. Adjusted AER reductions for patients who were eosinophil-low were comparable to reductions in the overall population: 54% (P 5 .002), 14% (P 5 .48), and 35% (P 5 .05) for 490-mg, 210mg, and 70-mg doses of astegolimab. Adverse events were similar in astegolimab-and placebo-treated groups. Conclusions: Astegolimab reduced AER in a broad population of patients, including those who were eosinophil-low, with inadequately controlled, severe asthma. Astegolimab was safe and well tolerated. (J Allergy Clin Immunol 2021;nnn:nnnnnn.)
Respiratory viral infections are associated with an increased risk of asthma, but how acute Th1 antiviral immune responses lead to chronic inflammatory Th2 disease remains undefined. We define a novel pathway that links transient viral infection to chronic lung disease with dendritic cell (DC) expression of the high-affinity IgE receptor (FcεRIα). In a mouse model of virus-induced chronic lung disease, in which Sendai virus triggered a switch to persistent mucous cell metaplasia and airway hyperreactivity after clearance of replicating virus, we found that FceRIa−/− mice no longer developed mucous cell metaplasia. Viral infection induced IgE-independent, type I IFN receptor–dependent expression of FcεRIα on mouse lung DCs. Cross-linking DC FcεRIα resulted in the production of the T cell chemoattractant CCL28. FceRIa−/− mice had decreased CCL28 and recruitment of IL-13–producing CD4+ T cells to the lung after viral infection. Transfer of wild-type DCs to FceRIa−/− mice restored these events, whereas blockade of CCL28 inhibited mucous cell metaplasia. Therefore, lung DC expression of FcεRIα is part of the antiviral response that recruits CD4+ T cells and drives mucous cell metaplasia, thus linking antiviral responses to allergic/asthmatic Th2 responses.
Ecotilling was used as a simple nucleotide polymorphism (SNP) discovery tool to examine DNA variation in natural populations of the western black cottonwood, Populus trichocarpa, and was found to be more efficient than sequencing for large-scale studies of genetic variation in this tree. A publicly available, live reference collection of P. trichocarpa from the University of British Columbia Botanical Garden was used in this study to survey variation in nine different genes among individuals from 41 different populations. A large amount of genetic variation was detected, but the level of variation appears to be less than in the related species, Populus tremula, based on reported statistics for that tree. Genes examined varied considerably in their level of variation, from PoptrTB1 which had a single SNP, to PoptrLFY which had more than 23 in the 1000-bp region examined. Overall nucleotide diversity, measured as (Total), was relatively low at 0.00184. Linkage disequilibrium, on the other hand, was higher than reported for some woody plant species, with mean r2 equal to 0.34. This study reveals the potential of Ecotilling as a rapid genotype discovery method to explore and utilize the large pool of genetic variation in tree species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.