Respiratory viral infections are associated with an increased risk of asthma, but how acute Th1 antiviral immune responses lead to chronic inflammatory Th2 disease remains undefined. We define a novel pathway that links transient viral infection to chronic lung disease with dendritic cell (DC) expression of the high-affinity IgE receptor (FcεRIα). In a mouse model of virus-induced chronic lung disease, in which Sendai virus triggered a switch to persistent mucous cell metaplasia and airway hyperreactivity after clearance of replicating virus, we found that FceRIa−/− mice no longer developed mucous cell metaplasia. Viral infection induced IgE-independent, type I IFN receptor–dependent expression of FcεRIα on mouse lung DCs. Cross-linking DC FcεRIα resulted in the production of the T cell chemoattractant CCL28. FceRIa−/− mice had decreased CCL28 and recruitment of IL-13–producing CD4+ T cells to the lung after viral infection. Transfer of wild-type DCs to FceRIa−/− mice restored these events, whereas blockade of CCL28 inhibited mucous cell metaplasia. Therefore, lung DC expression of FcεRIα is part of the antiviral response that recruits CD4+ T cells and drives mucous cell metaplasia, thus linking antiviral responses to allergic/asthmatic Th2 responses.
Dendritic cells are ideally suited to orchestrate the innate and adaptive immune responses to infection, but we know little about how these cells respond to infection with common respiratory viruses. Paramyxoviral infections are the most frequent cause of serious respiratory illness in childhood and are associated with an increased risk of asthma. We therefore used a high-fidelity mouse model of paramyxoviral respiratory infection triggered by Sendai virus to examine the response of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) in the lung. We found that pDCs are scarce at baseline but become the predominant population of lung dendritic cells during infection. This recruitment allows for a source of IFN-α locally at the site of infection. In contrast, cDCs rapidly differentiate into myeloid cDCs and begin to migrate from the lung to draining lymph nodes within 2 h after viral inoculation. These events cause the number of lung cDCs to decrease rapidly and remain decreased at the site of viral infection. Maturation and migration of lung cDCs depends on Ccl5 and Ccr5 signals because these events are significantly impaired in Ccl5−/− and Ccr5−/− mice. cDCs failure to migrate to draining lymph nodes in Ccl5−/− or Ccr5−/− mice is associated with impaired up-regulation of CCR7 that would normally direct this process. Our results indicate that pDCs and cDCs respond distinctly to respiratory paramyxoviral infection with patterns of movement that should serve to coordinate the innate and adaptive immune responses, respectively.
Alterations in gastrointestinal microbiota indirectly modulate the risk of atopic disease, but effects on respiratory viral infections are less clear. Using the murine paramyxoviral virus type 1, Sendai virus (SeV), we examined the effect of altering gastrointestinal microbiota on the pulmonary antiviral immune response. C57BL6 mice were treated with streptomycin before or during infection with SeV and resulting immune response studied. Ingestion of the non-absorbable antibiotic streptomycin led to a marked reduction in intestinal microbial diversity without a significant effect on lung microbiota. Reduction in diversity in the gastrointestinal tract was followed by greatly increased mortality to respiratory viral infection (p < 0.0001). This increase in mortality was associated with a dysregulated immune response characterized by decreased lung (p = 0.01) and intestinal (p = 0.03) regulatory T cells (Tregs), and increased lung IFNγ (p = 0.049), IL-6 (p = 0.015), and CCL2 (p = 0.037). Adoptive transfer of Treg cells or neutralization of IFNγ prevented increased mortality. Furthermore, Lin−CD4+ cells appeared to be a potential source of the increased IFNγ. Together, these results demonstrate gastrointestinal microbiota modulate immune responses at distant mucosal sites and have the ability to significantly impact mortality in response to a respiratory viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.