ABSTRACT:Over 50 allelic variants of cytochrome P450 2D6 (CYP2D6) encoding fully functional, reduced-activity, or nonfunctional proteins have been described. Compared with Caucasians, studies in black populations demonstrate a tendency toward slower CYP2D6 activity, attributed in part to the presence of a variant allele associated with reduced activity, the CYP2D6*17 allele. To investigate the kinetic characteristics of this variant protein, expression constructs coding for CYP2D6.1, CYP2D6.2, and CYP2D6.17 gene products were prepared and transfected into mammalian COS-7 and insect (Trichoplusia ni) cells for expression. Microsomal fractions containing the expressed proteins were used to determine the kinetic parameters K m , V max , and intrinsic clearance (Cl int ) for the model substrates dextromethorphan, bufuralol, and debrisoquine. Relative to the wild-type CYP2D6.1 protein expressed in COS-7 cells, CYP2D6.17 exhibited a 2-fold higher K m and a 50% reduction in V max using dextromethorphan as the substrate. In contrast, no appreciable change in bufuralol K m was observed with CYP2D6.17 whereas V max was decreased by 50%. When expressed in the baculovirus expression system, CYP2D6.17 exhibited a 6-fold increase in K m but no change in V max with dextromethorphan as the substrate, a 2-fold higher K m and 50% reduction in V max with bufuralol, and a 3-fold increase in K m and no change in V max with debrisoquine relative to CYP2D6.1. These data indicate that CYP2D6.17 exhibits reduced metabolic activity toward all three commonly used CYP2D6 substrates, although specific effects on substrate affinity and turnover demonstrate some substrate dependence.
A human B-lymphoblastoid cell line, designated MCL-5, constitutively expressing human cytochrome P-450 CYP1A1 and also expressing five transfected human cDNAs encoding drug-metabolizing enzymes, has been developed. cDNAs encoding CYP1A2, CYP2A6, and microsomal epoxide hydrolase (mEH) were introduced by using a vector conferring hygromycin B resistance, and cDNAs encoding CYP2E1 and CYP3A4 were introduced by using a vector conferring resistance to 1-histidinol. MCL-5 cells stably expressed all five cDNAs and the native CYP1A1 as determined by measurement of form-specific enzyme activity levels. The mutagenicity of seven model procarcinogens to MCL-5 cells was examined at the hypoxanthine guanine phosphoribosyltransferase (hprt) and thymidine kinase (tk) loci. Exposure to benzo[a]pyrene (BP), 3-methylcholanthrene (3MC), N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), aflatoxin B1, (AFB1), 2-(acetylamino)fluorene (AAF), or benzidine (BZD) induced a statistically significant increase in mutant frequency. Linear interpolation of the concentration of procarcinogen necessary to produce a doubling of the mutant fraction at the hprt locus in MCL-5 cells and the parent AHH-1 cell line revealed that, for each of the chemicals examined, except BZD, MCL-5 cells were significantly more sensitive than the parent AHH-1 cells. The increase in sensitivity to mutagenicity ranged from 3-fold for AAF to greater than 40,000-fold for NDMA. MCL-5 cells have great potential as a screening system for the analysis of human procarcinogen/promutagen activation.
An AHH-1 TK+/- cell derivative was developed that stably expresses human cytochrome P4501B1 (CYP1B1) cDNA in an extrachromosomal vector which confers resistance to 1-histidinol and co-expresses NADPH cytochrome P450 oxidoreductase (OR). The CYP1B1-expressing cell line was designated h1B1/OR. Microsomes prepared from CYP1B1 cDNA expressing cells exhibit elevated levels of 7-ethoxy-resorufin deethylase (EROD), 7-ethoxy-4-trifluoromethyl-coumarin deethylase (EFCD), benzo(alpha)pyrene hydroxylase (BPH), bufuralol 1'-hydroxylase, testosterone hydroxylase activities and spectrally quantifiable cytochrome P450. CYP1B1-containing microsomes did not contain detectable coumarin 7-hydroxylase, p-nitrophenol hydroxylase, lauric acid hydroxylase, (S)-mephenytoin 4'-hydroxylase or diclofenac 4'-hydroxylase activities. Kinetic parameters for selected substrates were compared among CYP1B1 and the two additional members of the CYP1 family, CYP1A1 and CYP1A2. For BPH and EFCD, the rank order of rates of substrate metabolism were CYP1A1 > CYP1B1 > CYP1A2. For EROD, the rank order of substrate metabolism was CYP1A1 > CYP1A2 > CYP1B1. For both EROD and EFCD the apparent K(m) values for CYP1B1 were more similar to CYP1A1 than to CYP1A2. In order to begin to characterize the promutagen activating ability of CYP1B1, the mutagenicity of selected chemicals was examined in h1B1/OR cells; there was increased sensitivity (CYP1B1-expressing relative to control cells) to the mutagenicity of benzo(a)pyrene, cyclopenta(c,d)pyrene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and aflatoxin B1 (AFB). CYP1B1, expressed in this system, appears to be particularly efficient at activating AFB.
We have developed a human lymphoblastoid cell line, designated 3A4/Hol, which stably expresses human CYP3A4 cDNA. This cell line exhibited testosterone 6 beta-hydroxylase activity, produced immunologically detectable CYP3A4 protein and was more sensitive to the cytotoxicity and mutagenicity of the carcinogenic mycotoxin aflatoxin B1 (AFB1) than was the parent cell line. The concentration-response for AFB1 cytotoxicity and mutagenicity in 3A4/Hol cells was compared to the responses of isogenic cell lines expressing comparable levels of human CYP1A2 (1A2/Hyg cells) and human CYP2A3 (2A3/Hyg cells). 1A2/Hyg cells were 3- to 6-fold more sensitive than 3A4/Hol cells to AFB1-induced mutation. 3A4/Hol cells were 10- to 15-fold more sensitive to AFB1-induced mutation than 2A3/Hyg cells. The differences in mutagenicity were supported by the relative binding of [3H]AFB1 to cellular DNA.
We report that, in a human cell line, human cytochrome P450IIA3 is capable of metabolizing aflatoxin B1, benzo[a]-pyrene, N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) to cytotoxic and mutagenic species. Cytochrome P450IIA3-mediated activation of NDMA and NDEA was compared with human cytochrome P450IIE1-mediated activation in the same cell system. P450IIE1 was more effective at activating NDMA than P450IIA3, while P450IIA3 was more effective at activating NDEA than P450IIE1. Whole cells and microsomal fractions obtained from control cells and from cells expressing the P450IIA3 cDNA were characterized for expression of P450IIA3. Microsomal coumarin 7-hydroxylase activity was some 40 times greater in the transfected cells than in the control cells and was catalyzed by a protein that was immunochemically related to the rat liver cytochrome P450IIA gene family. Immunoblot analysis demonstrated that this protein was readily detectable in transfected cells but barely detectable in control cells. We also report the DNA and deduced amino acid sequence of the P450IIA3 cDNA isolate used in this study. Our isolate encodes a protein 489 amino acids that is five amino acids shorter at the N terminus but otherwise identical to a previously reported human P450IIA3 cDNA sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.