Background: Horizontal Gaze Palsy with Progressive Scoliosis (HGPPS) is a rare autosomal recessive congenital disorder characterized by the absence of conjugate horizontal eye movements, and progressive debilitating scoliosis during childhood and adolescence. HGPPS is associated with mutations of the ROBO3 gene. In this study, the objective is to identify pathogenic variants in a cohort of Tunisian patients with HGPPS and to further define ROBO3 genotype-phenotype correlations. Methods: Thirteen Tunisian patients from six unrelated consanguineous families all manifesting HGPPS were genetically investigated. We searched for the causative variants for HGPPS using classical Sanger and whole exome sequencing. Results: Four distinct homozygous mutations were identified in ROBO3 gene. Two of these were newly identified homozygous and non-synonymous mutations, causing effectively damage to the protein by in silico analysis. The other two mutations were previously reported in Tunisian patients with HGPPS. Mutations were validated by Sanger sequencing in parents and affected individuals. Conclusion: To the best of our knowledge, this is the largest ever reported cohort on families with HGPPS in whom ROBO3 mutations were identified. These molecular findings have expanded our knowledge of the ROBO3 mutational spectrum. The relevance of our current study is twofold ; first to assist proper management of the scoliosis and second to protect families at risk.
Cockayne syndrome (CS) is a rare disease caused by mutations in ERCC6/CSB or ERCC8/CSA. We report here the clinical, genetic, and functional analyses of three unrelated patients mutated in ERCC6/CSB with a severe phenotype. After clinical examination, two patients were investigated via next generation sequencing, targeting seventeen Nucleotide Excision Repair (NER) genes. All three patients harbored a novel, c.3156dup, homozygous mutation located in exon 18 of ERCC6/CSB that affects the C-terminal region of the protein. Sanger sequencing confirmed the mutation and the parental segregation in the three families, and Western blots showed a lack of the full-length protein. NER functional impairment was shown by reduced recovery of RNA synthesis with proficient unscheduled DNA synthesis after UV-C radiations in patient-derived fibroblasts. Despite sharing the same mutation, the clinical spectrum was heterogeneous among the three patients, and only two patients displayed clinical photosensitivity. This novel ERCC6 variant in Tunisian patients suggests a founder effect and has implications for setting-up prenatal diagnosis/genetic counselling in North Africa, where this disease is largely undiagnosed. This study reveals one of the rare cases of CS clinical heterogeneity despite the same mutation. Moreover, the occurrence of an identical homozygous mutation, which either results in clinical photosensitivity or does not, strongly suggests that this classic CS symptom relies on multiple factors.
Escobar syndrome is a rare, autosomal recessive disorder that affects the musculoskeletal system and the skin. Mutations in the CHRNG and TPM2 genes are associated with this pathology. In this study, we conducted a clinical and genetic investigation of five patients and also explored via in silico and gene expression analysis their phenotypic variability. In detail, we identified a patient with a novel composite heterozygous variant of the CHRNG gene and two recurrent mutations in both CHRNG and TPM2 in the rest of the patients. As for the clinical particularities, we reported a list of modifier genes in a patient suffering from myopathy. Moreover, we identified decreased expression of IGF-1, which could be related to the short stature of Escobar patients, and increased expression of POLG1 specific to patients with TPM2 mutation. Through this study, we identified the genetic spectrum of Escobar syndrome in the Tunisian population, which will allow setting up genetic counseling and prenatal diagnosis for families at risk. In addition, we highlighted relevant biomarkers that could differentiate between patients with different genetic defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.