Abstract. Dynamic global vegetation models are a common tool to assess the effect of climate and land use change on vegetation. Though most applications of dynamic global vegetation models use plant functional types, some also simulate species occurrences. While the current development aims to include more processes, e.g. the nitrogen cycle, the models still typically assume an ample seed supply allowing all species to establish once the climate conditions are suitable. Pollen studies have shown that a number of plant species lag behind in occupying climatological suitable areas (e.g. after a change in the climate) as they need to arrive at and establish in the newly suitable areas. Previous attempts to implement migration in dynamic vegetation models have allowed for the simulation of either only small areas or have been implemented as a post-process, not allowing for feedbacks within the vegetation. Here we present two novel methods simulating migrating and interacting tree species which have the potential to be used for simulations of large areas. Both distribute seeds between grid cells, leading to individual establishment. The first method uses an approach based on fast Fourier transforms, while in the second approach we iteratively shift the seed production matrix and disperse seeds with a given probability. While the former method is computationally faster, it does not allow for modification of the seed dispersal kernel parameters with respect to terrain features, which the latter method allows. We evaluate the increase in computational demand of both methods. Since dispersal acts at a scale no larger than 1 km, all dispersal simulations need to be performed at maximum at that scale. However, with the currently available computational power it is not feasible to simulate the local vegetation dynamics of a large area at that scale. We present an option to decrease the required computational costs through a reduction in the number of grid cells for which the local dynamics are simulated only along migration transects. Evaluation of species patterns and migration speeds shows that simulating along transects reduces migration speed, and both methods applied on the transects produce reasonable results. Furthermore, using the migration transects, both methods are sufficiently computationally efficient to allow for large-scale DGVM simulations with migration.
Kettle holes are widespread in moraine landscapes. Their hydrological properties may be very vulnerable to changes in climatic conditions. To increase our knowledge of how kettle holes function and how they may be affected by climate change requires a model that can be applied to a variety of them regardless of their properties. We used the PIRFICT time series model to simulate the water levels in kettle holes over the last 50 years. For model calibration we applied time series of two-year lengths. We observed correlations between climate indices and water level statistics with a delayed response of one year. The results show a decrease in autumn low water levels and an increase in water level fluctuations. These effects correspond to observed increased summer evaporation and winter precipitation, and imply that the habitat quality dynamic of kettle holes depends on climatic conditions. With the prognosis of even warmer and dryer summers in Europe in the future, conservation strategies for kettle holes should include the effects of climate change.
Abstract. Dynamic vegetation models are a common tool to assess the effect of climate and land use change on vegetation. While the current development aims to include more processes, e.g. the nitrogen cycle, the models still typically assume an ample seed supply allowing all species to establish once the climate conditions are suitable. A number of species have been shown to lag behind in occupying climatological suitable areas (e.g. after a change in the climate) as they need to arrive and establish at the newly suitable areas. Previous attempts to implement migration in dynamic vegetation models have allowed simulating either only small areas or have been implemented as post process, not allowing for feedbacks within the vegetation. Here we present two novel methods simulating migrating and interacting tree species which have the potential to be used for continental simulations. Both distribute seeds between grid cells leading to individual establishment. The first method uses an approach based on Fast Fourier transform while in the second approach we iteratively shift the seed production matrix and disperse seeds with a given probability. While the former method is computationally marginally faster, it does not allow for modification of the seed dispersal kernel parameters with respect to terrain features, which the latter method allows. We evaluate the increase in computational demand of both methods. Since dispersal acts at a scale no larger than 1 km, all dispersal simulations need to be performed at least at that scale. However, with the current available computational power it is not feasible to simulate the vegetation dynamics of a whole continent at that scale. We present an option to decrease the required computational costs, reducing the number of grid cells where the local dynamics is computed by simulating it only along migration transects. Evaluation of species patterns and migration speeds shows that although the simulation along transects reduces the migration speed slightly, both methods are reliable. Furthermore, both methods are sufficiently computationally efficient to allow large scale DGVM simulations with migration on entire continents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.