Objectives Forecasting epidemics like COVID-19 is of crucial importance, it will not only help the governments but also, the medical practitioners to know the future trajectory of the spread, which might help them with the best possible treatments, precautionary measures and protections. In this study, the popular autoregressive integrated moving average (ARIMA) will be used to forecast the cumulative number of confirmed, recovered cases, and the number of deaths in Pakistan from COVID-19 spanning June 25, 2020 to July 04, 2020 (10 days ahead forecast). Methods To meet the desire objectives, data for this study have been taken from the Ministry of National Health Service of Pakistan’s website from February 27, 2020 to June 24, 2020. Two different ARIMA models will be used to obtain the next 10 days ahead point and 95% interval forecast of the cumulative confirmed cases, recovered cases, and deaths. Statistical software, RStudio, with “forecast”, “ggplot2”, “tseries”, and “seasonal” packages have been used for data analysis. Results The forecasted cumulative confirmed cases, recovered, and the number of deaths up to July 04, 2020 are 231239 with a 95% prediction interval of (219648, 242832), 111616 with a prediction interval of (101063, 122168), and 5043 with a 95% prediction interval of (4791, 5295) respectively. Statistical measures i.e. root mean square error (RMSE) and mean absolute error (MAE) are used for model accuracy. It is evident from the analysis results that the ARIMA and seasonal ARIMA model is better than the other time series models in terms of forecasting accuracy and hence recommended to be used for forecasting epidemics like COVID-19. Conclusion It is concluded from this study that the forecasting accuracy of ARIMA models in terms of RMSE, and MAE are better than the other time series models, and therefore could be considered a good forecasting tool in forecasting the spread, recoveries, and deaths from the current outbreak of COVID-19. Besides, this study can also help the decision-makers in developing short-term strategies with regards to the current number of disease occurrences until an appropriate medication is developed.
Enhancers are short DNA regulatory elements which play a vital role in gene expression. Due to their important roles in genomics, several computational models have been proposed in the literature for identification of enhancers and their strengths using traditional machine learning algorithms, however, the proposed models are unable to identify enhancers and their strength with reasonable accuracy because of high non-linearity in DNA sequences. This paper proposes a two-level intelligent model based on Deep Neural Network (DNN) along with multiple feature extraction methods. Firstly, the proposed model represents the given DNA sequences into feature vectors using Pseudo K-tuple Nucleotide Composition (PseKNC) and FastText methods. Secondly, the features vectors are fused to make a heterogeneous features vector that considered the local and global correlation amongst the given sequences along with internal structure information. Finally, the heterogeneous feature vector is given to a DNN model to make final predictions. The proposed iEnhancer-DHF is developed using two-layer approach. The first layer predicts whether the given DNA samples are enhancers or non-enhancers whereas the second layer identifies either the enhancers are strong enhancers or weak enhancers. The outcome of the proposed model was rigorously assessed using both training and independent datasets via 10-fold cross validation method. The validation outcome demonstrated that the iEnhancer-DHF model yielded accuracies 86.07% and 69.60% at first layer and second layer respectively utilizing the training dataset. Similarly, the model yielded accuracies 83.21% and 67.54% at first layer and at second layer respectively by using the independent dataset. Additionally, the outcomes of the proposed model was initially compared with widely applied classifiers such as Support Vector Machine, Random Forest and K-nearest Neighbor and subsequently the performance is compared with the existing models using both the training and independent datasets. The comparison results exhibited that the iEnhancer-DHF model performed superior than the recently published models.
Datasets produced in modern research, such as biomedical science, pose a number of challenges for machine learning techniques used in binary classification due to high dimensionality. Feature selection is one of the most important statistical techniques used for dimensionality reduction of the datasets. Therefore, techniques are needed to find an optimal number of features to obtain more desirable learning performance. In the machine learning context, gene selection is treated as a feature selection problem, the objective of which is to find a small subset of the most discriminative features for the target class. In this paper, a gene selection method is proposed that identifies the most discriminative genes in two stages. Genes that unambiguously assign the maximum number of samples to their respective classes using a greedy approach are selected in the first stage. The remaining genes are divided into a certain number of clusters. From each cluster, the most informative genes are selected via the lasso method and combined with genes selected in the first stage. The performance of the proposed method is assessed through comparison with other stateof-the-art feature selection methods using gene expression datasets. This is done by applying two classifiers i.e., random forest and support vector machine, on datasets with selected genes and training samples and calculating their classification accuracy, sensitivity, and Brier score on samples in the testing part. Boxplots based on the results and correlation matrices of the selected genes are thenceforth constructed. The results show that the proposed method outperforms the other methods. INDEX TERMS Clustering, classification, feature selection, high dimensional data, microarray gene expression data.
Drought is a complex natural hazard. Its several adverse impacts are prevailing in almost all climatic zones around the world. In this regards, drought monitoring and forecasting play a vital role in making drought mitigation policies. Therefore, several drought monitoring tools based on probabilistic models had been developed for precise and accurate inferences of drought severity and its effects. However, risk of inaccurate determination of drought classes always exists in probabilistic models. To overcome this issue, we proposed a new system based Probabilistic Weighted Joint Aggregative Drought Index (PWJADI) criterion for three multi-scalar drought indices, namely Standardized Precipitation Index (SPI), Standardized Precipitation Temperature Index (SPTI), and Standardized Precipitation Evapotranspiration Index (SPEI) at one-month time scale. By the basic assumption of the Markov chain, the PWJADI is based on the temporal switched weights that are propagated from the transition probability matrix of each temporal classification of drought index. Application of the proposed method is made for three meteorological stations of Pakistan. We found that our proposed model has ability to restructure the drought classes by capturing and bending the information from the historical behaviour of each drought class. Consequently, to make accurate and precise drought mitigation policies, the proposed method may integrate into effective drought monitoring systems.
This research provides the instructional exploration of analytic geometry pattern based on van Hiele thinking pattern, and the potential of GeoGebra effect on experimental group along with its nested group (high and low achievers) in comparison with control group in analytic geometry. To investigate the significant effect of GeoGebra, the two match groups were constructed on their previous grade-11 mathematics records with almost equal statistical background and with the same compatibility in the biological age. Further, six-week experiments of 22 lessons were prepared and two teaching methods (tradition vs DGS aided instructions) were tested. Three hypotheses were carried out i.e. Treatment does not significantly affect, the two groups in mathematical achievement mean scores and, the higher and low achievers of the two groups in mathematical achievement mean scores. To measure the treatment effect, t-test was used by SPSS. Analyses of the research revealed that experimental group performed well, while; GeoGebra was influential in favor of low achievers in comparison to control low achievers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.