Chemical coordination of gene expression among bacteria as a function of population density is regulated by a mechanism known as 'quorum sensing' (QS). QS in Pseudomonas aeruginosa, an opportunistic pathogen that causes disease in immunocompromised patients, is mediated by binding of the transcriptional activator, LasR, to its ligand, 3-oxo-C(12)-HSL, leading to population-wide secretion of virulence factors and biofilm formation. We have targeted QS in P. aeruginosa with a set of electrophilic probes designed to covalently bind Cys79 in the LasR binding pocket, leading to specific inhibition of QS-regulated gene expression and concomitant reduction of virulence factor secretion and biofilm formation. This first example of covalent modification of a QS receptor provides a new tool to study molecular mechanisms of bacterial group behavior and could lead to new strategies for targeting bacterial virulence.
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.