The KNOWITALL system aims to automate the tedious process of extracting large collections of facts (e.g., names of scientists or politicians) from the Web in an unsupervised, domain-independent, and scalable manner. The paper presents an overview of KNOW-ITALL's novel architecture and design principles, emphasizing its distinctive ability to extract information without any hand-labeled training examples. In its first major run, KNOW-ITALL extracted over 50,000 facts, but suggested a challenge: How can we improve KNOW-ITALL's recall and extraction rate without sacrificing precision? This paper presents three distinct ways to address this challenge and evaluates their performance. Pattern Learning learns domain-specific extraction rules, which enable additional extractions. Subclass Extraction automatically identifies sub-classes in order to boost recall. List Extraction locates lists of class instances, learns a "wrapper" for each list, and extracts elements of each list. Since each method bootstraps from KNOWITALL's domainindependent methods, the methods also obviate hand-labeled training examples. The paper reports on experiments, focused on named-entity extraction, that measure the relative efficacy of each method and demonstrate their synergy. In concert, our methods gave KNOW-ITALL a 4-fold to 8-fold increase in recall, while maintaining high precision, and discovered over 10,000 cities missing from the Tipster Gazetteer.
Language models pretrained on text from a wide variety of sources form the foundation of today's NLP. In light of the success of these broad-coverage models, we investigate whether it is still helpful to tailor a pretrained model to the domain of a target task. We present a study across four domains (biomedical and computer science publications, news, and reviews) and eight classification tasks, showing that a second phase of pretraining indomain (domain-adaptive pretraining) leads to performance gains, under both high-and low-resource settings. Moreover, adapting to the task's unlabeled data (task-adaptive pretraining) improves performance even after domain-adaptive pretraining. Finally, we show that adapting to a task corpus augmented using simple data selection strategies is an effective alternative, especially when resources for domain-adaptive pretraining might be unavailable. Overall, we consistently find that multiphase adaptive pretraining offers large gains in task performance.
Manually querying search engines in order to accumulate a large body of factual information is a tedious, error-prone process of piecemeal search. Search engines retrieve and rank potentially relevant documents for human perusal, but do not extract facts, assess confidence, or fuse information from multiple documents. This paper introduces KNOWITALL, a system that aims to automate the tedious process of extracting large collections of facts from the web in an autonomous, domain-independent, and scalable manner.The paper describes preliminary experiments in which an instance of KNOWITALL, running for four days on a single machine, was able to automatically extract 54,753 facts. KNOWITALL associates a probability with each fact enabling it to trade off precision and recall. The paper analyzes KNOWITALL's architecture and reports on lessons learned for the design of large-scale information extraction systems.
We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in www.semanticscholar.org.
Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token-and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, the embeddings power strong performance on end tasks. We propose SPECTER, a new method to generate document-level embedding of scientific documents based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SCIDOCS, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that SPECTER outperforms a variety of competitive baselines on the benchmark. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.