Stroke is associated with over-production of misfolded and aggregating proteins. However, it remains largely unclear whether enhanced removal of protein aggregates following ischemic stroke is neuroprotective. Deubiquitinating enzymes (DUBs) are a large group of proteases that regulate protein degradation. The ubiquitin-specific protease 14 (USP14) is a DUB that is associated with the proteasome and negatively regulates proteasome activity. In this study, we examined the effect of IU1, a specific small molecule inhibitor of USP14, on mouse focal cerebral ischemic stroke-induced neuronal injury in mice. We found that IU1 treatment attenuated ischemic stroke-caused neuronal injury, which was reflected by increased survival rate, reduced infarct volume, as well as decreased neuronal loss in the IU1-treated mice compared to the control-treated mice. Additionally, IU1 treatment is associated with reduced protein aggregates and enhanced proteasome functionality. These data not only highlight the significance of protein homeostasis in cerebral ischemia/reperfusion-induced neuronal injury but also extend the therapeutic role of DUB inhibitors.
This study tested the hypothesis that dietary soy would attenuate the development of hypertension in female spontaneously hypertensive rats (SHR). Female SHR and control Wistar-Kyoto rats were obtained at 4 wk of age, randomly assigned to either an ovariectomized (OVX) group or a sham-operated group, and placed on a soy diet or control casein diet. After a minimum of 8 wk on their respective diets, mean arterial pressure (MAP) and heart rate (HR) were recorded before and after inhibition of nitric oxide synthase, air-jet stress, or ganglionic blockade. The major finding of this study is that MAP was reduced in the OVX SHR consuming soy diet compared with the casein-fed controls (150 +/- 4 vs. 164 +/- 3 mmHg). Plasma genistein concentrations were increased in the soy-fed OVX SHR (1.23 +/- 0.31 microM) compared with the casein-fed OVX SHR (nondetectable). However, there was no difference in plasma genistein concentrations between sham-operated and OVX SHR (1.37 +/- 0.42 vs. 1.23 +/- 0.31 microM). Inhibition of nitric oxide synthase increased MAP and decreased HR in all groups; diet did not affect this response. Air-jet stress increased MAP and HR in all groups. However, these responses were exaggerated in the soy-fed SHR. Finally, ganglionic blockade abolished the antihypertensive effect of soy diet in the OVX SHR. These findings indicate that dietary soy exerts an antihypertensive effect in OVX SHR. This effect does not involve the nitric oxide system but may be related to an as yet undefined interaction with the autonomic nervous system.
Inflammatory cardiomyopathy is a common cause of heart failure developing on a basis of cardiac inflammation. Cardiac inflammation - or myocarditis - is usually triggered by infections or cardiac damage of any cause. Experimental autoimmune myocarditis refers to a CD4(+) T cell-mediated mouse model of inflammatory cardiomyopathy. So far, the experimental autoimmune myocarditis model helped us to understand the role of various chemokines, cytokines, and cell subsets in the progression of inflammatory heart disease. Here, we review the current therapeutic options for inflammatory cardiomyopathy, and delineate potential future treatment approaches from the most recent mechanistic insights given by the experimental autoimmune myocarditis model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.