In cold dark matter cosmological models, structures form and grow through the merging of smaller units. Numerical simulations have shown that such merging is incomplete; the inner cores of haloes survive and orbit as 'subhaloes' within their hosts. Here we report a simulation that resolves such substructure even in the very inner regions of the Galactic halo. We find hundreds of very concentrated dark matter clumps surviving near the solar circle, as well as numerous cold streams. The simulation also reveals the fractal nature of dark matter clustering: isolated haloes and subhaloes contain the same relative amount of substructure and both have cusped inner density profiles. The inner mass and phase-space densities of subhaloes match those of recently discovered faint, dark-matter-dominated dwarf satellite galaxies, and the overall amount of substructure can explain the anomalous flux ratios seen in strong gravitational lenses. Subhaloes boost gamma-ray production from dark matter annihilation by factors of 4 to 15 relative to smooth galactic models. Local cosmic ray production is also enhanced, typically by a factor of 1.4 but by a factor of more than 10 in one per cent of locations lying sufficiently close to a large subhalo. (These estimates assume that the gravitational effects of baryons on dark matter substructure are small.).
We have carried out a hydrodynamical code comparison study of interacting multiphase fluids. The two commonly used techniques of grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to model processes that are fundamentally important across many areas of astrophysics. Whilst Eulerian grid based methods are able to resolve and treat important dynamical instabilities, such as Kelvin-Helmholtz or Rayleigh-Taylor, these processes are poorly or not at all resolved by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard implementation, introduces spurious pressure forces on particles in regions where there are steep density gradients. This results in a boundary gap of the size of the SPH smoothing kernel over which information is not transferred.Comment: 15 pages, 13 figures, to be submitted to MNRAS. For high-resolution figures, please see http://www-theorie.physik.unizh.ch/~agertz
We use a series of cosmological N-body simulations for a flat cold dark matter ( CDM) cosmology to investigate the structural properties of dark matter haloes, at redshift zero, in the mass range 3 × 10 9 h −1 M vir 3 × 10 13 h −1 M . These properties include the concentration parameter, c, the spin parameter, λ, and the mean axis ratio,q. For the concentration-mass relation we find c ∝ M −0.11 vir in agreement with the model proposed by Bullock et al., but inconsistent with the alternative model of Eke et al. The normalization of the concentrationmass relation, however, is 15 per cent lower than suggested by Bullock et al. The results for λ andq are in good agreement with previous studies, when extrapolated to the lower halo masses probed here, while c and λ are anticorrelated, in that high-spin haloes have, on average, lower concentrations. In an attempt to remove unrelaxed haloes from the sample, we compute for each halo the offset parameter, x off , defined as the distance between the most bound particle and the centre of mass, in units of the virial radius. Removing haloes with large x off increases the mean concentration by ∼10 per cent, lowers the mean spin parameter by ∼15 per cent, and removes the most prolate haloes. In addition, it largely removes the anticorrelation between c and λ, though not entirely. We also investigate the relation between halo properties and their largescale environment density. For low-mass haloes we find that more concentrated haloes live in denser environments than their less concentrated counterparts of the same mass, consistent with recent correlation function analyses. Note, however, that the trend is weak compared to the scatter. For the halo spin parameters we find no environment dependence, while there is a weak indication that the most spherical haloes reside in slightly denser environments. Finally, using a simple model for disc galaxy formation we show that haloes that host low surface brightness galaxies are expected to be hosted by a biased subset of haloes. Not only do these haloes have spin parameters that are larger than average, they also have concentration parameters that are ∼15 per cent lower than the average at a given halo mass. We discuss the implications of all these findings for the claimed disagreement between halo concentrations inferred from low surface brightness rotation curves, and those expected for a CDM cosmology.
We perform a series of simulations of a Galactic mass dark matter halo at different resolutions: our largest uses over 3 billion particles and has a mass resolution of 1000 M⊙. We quantify the structural properties of the inner dark matter distribution and study how they depend on numerical resolution. We can measure the density profile to a distance of 120 pc (0.05 per cent of Rvir), where the logarithmic slope is −0.8 and −1.4 at (0.5 per cent of Rvir). We propose a new two‐parameter fitting function that has a linearly varying logarithmic density gradient over the resolved radii which fits the GHALO and VL2 density profiles extremely well. Convergence in the halo shape is achieved at roughly three times the convergence radius for the density profile at which point the halo becomes more spherical due to numerical resolution. The six‐dimensional phase‐space profile is dominated by the presence of the substructures and does not follow a power law, except in the central few kpc which is devoid of substructure even at this resolution. The quantity, ρ/σ3, which is often used as a proxy for the six‐dimensional phase‐space density should be used with caution.
We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends‐of‐friends, spherical‐overdensity and phase‐space‐based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large‐scale structure of the universe. All the halo‐finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30–40 particles. However, also here the phase‐space finders excelled by resolving substructure down to 10–20 particles. By comparing the halo finders using a high‐resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.