We present an experimental investigation of the flow structure and vorticity field in the wake of a NACA-0012 airfoil pitching sinusoidally at small amplitude and high reduced frequencies. Molecular tagging velocimetry is used to quantify the characteristics of the vortex array (circulation, peak vorticity, core size, spatial arrangement) and its downstream evolution over the first chord length as a function of reduced frequency. The measured mean and fluctuating velocity fields are used to estimate the mean force on the airfoil and explore the connection between flow structure and thrust generation.Results show that strong concentrated vortices form very rapidly within the first wavelength of oscillation and exhibit interesting dynamics that depend on oscillation frequency. With increasing reduced frequency the transverse alignment of the vortex array changes from an orientation corresponding to velocity deficit (wake profile) to one with velocity excess (reverse Kármán street with jet profile). It is found, however, that the switch in the vortex array orientation does not coincide with the condition for crossover from drag to thrust. The mean force is estimated from a more complete control volume analysis, which takes into account the streamwise velocity fluctuations and the pressure term. Results clearly show that neglecting these terms can lead to a large overestimation of the mean force in strongly fluctuating velocity fields that are characteristic of airfoils executing highly unsteady motions. Our measurements show a decrease in the peak vorticity, as the vortices convect downstream, by an amount that is more than can be attributed to viscous diffusion. It is found that the presence of small levels of axial velocity gradients within the vortex cores, levels that can be difficult to measure experimentally, can lead to a measurable decrease in the peak vorticity even at the centre of the flow facility in a flow that is expected to be primarily two-dimensional.
Fluid flow and scalar transport through porous fins Phys. Fluids 26, 055104 (2014); 10.1063/1.4873415 Particle image velocimetry measurements of vortex rings head-on collision with a heated vertical plate Phys. Fluids 22, 053604 (2010);The interaction of vortex rings of constant Reynolds number with porous surfaces composed of wire meshes of constant open area, i.e., surface porosity, but variable wire diameter is studied using flow visualization. The results indicate that several regimes of flow behavior exist in the parameter space investigated. The vortex ring passes through and immediately reforms downstream of the surface for porous surfaces with small wire mesh diameters. The transmitted vortex ring has the same diameter, but lower convection speed and circulation than the pre-interaction vortex ring. For these cases, secondary vortex rings are formed on the upstream side of the porous surface that convect upstream away from the screen. As the wire diameter of the porous surface is increased, smaller sub-scale vortical structures are formed on the transmitted vortex ring as it passes through the surface. The spatial scale of these structures is dependent on the diameter of the mesh wire. The vortex ring is disrupted but is able to reform downstream when these structures are small compared to the scale of the vortex ring. When these structures are large enough the transmitted vortex ring is disrupted and does not reform. The results indicate that the dynamics governing the vortex ring/mesh surface interaction are dependent not only on the strength of the vortex ring and the porosity of the surface, as previously thought, but also on the length scales (i.e., the diameter and spacing of the wire mesh) of the porous surface. C 2012 American Institute of Physics. [http://dx.
Finite size effects on aluminum/Teflon reaction channels under combustive environment: A Rice-Ramsperger-Kassel-Marcus and transition state theory study of fluorination Abstract. Three experimental techniques have been used to investigate the impact ignition of reactive materials. The three techniques are direct impact, indirect impact, and two-step impact. For the first two techniques, time-resolved light spectroscopy was used to identify reaction species from solid PTFE/Al reactive material. A common observation for these two techniques is that heating and some reaction was observed during initial impact of the PTFE/Al reactive material but the majority of the reaction appeared to occur following material breakup and subsequent impact with a secondary surface. There was no spectral evidence for aluminum-fluorine combustion. For the two-step impact technique, the reactive material was initially pulverized as it passed through a thin plate and then subsequently ignited when the debris cloud impacted a rigid anvil. All three experiments were observed with high-speed photography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.