The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation 1 . Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun 2,3 . A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering 4-7 . Here we report observations at a wavelength of 1.3 mm that set a size
Spectral analysis of Swift/XRT dataWe use the xspec v11.3.2 X-ray spectral fitting package to fit both a power law and a blackbody model to the XRT outburst data. In both models we allow for excess neutral hydrogen absorption (N H ) above the Galactic value along the line of sight to NGC 2770, N H,Gal = 1.7 × 10 20 cm −2 . The best-fit power law model (χ 2 = 7.5 for 17 degrees of freedom; probability, P = 0.98) has a photon index, Γ = 2.3 ± 0.3 (or, F ν ∝ ν −1.3±0.3 ) and N H = 6.9 +1.8 −1.5 × 10 21 cm −2 . The best-fit blackbody model is described by kT = 0.71 ± 0.08 keV and N H = 1.3 +1.0 −0.9 × 10 21 cm −2 . However, this model provides a much poorer fit to the data (χ 2 = 26.0 for 17 degrees of freedom; probability, P = 0.074). We therefore adopt the power law model as the best description of the data. The resulting count rate to flux conversion is 1 counts s −1 = 5 × 10 −11 erg cm −2 s −1 . The outburst undergoes a significant hard-to-soft spectral evolution as indicated by the ratio of counts in the 0.3 − 2 keV band and 2 − 10 keV band. The hardness ratio decreases from 1.35 ± 0.15 during the peak of the flare to 0.25 ± 0.10 about 400 s later. In the context of the power law model this spectral softening corresponds to a change from Γ = 1.70 ± 0.25 to 3.20 ± 0.35 during the same time interval. High resolution optical spectroscopyWe obtained the spectrum with the High Resolution Echelle Spectrometer (HIRES) mounted on the Keck I 10-m telescope beginning at Jan 17.46 UT. A total of four 1800-s exposures were obtained with a spectral resolution, R = 48, 000, and a slit width of 0.86 arcsec. The data reach a signal-to-noise ratio of 18 per pixel. We reduced the data with the MAKEE reduction package. We are interested in the Na I D and K I absorption features since they are sensitive to the gas column density, and hence extinction, along the line of the sight to the SN. Rejecting a Relativistic Origin for XRO 080109We investigate the possibility that XRO 080109 is the result of a relativistic outflow similar to that in GRBs. In this context the emission is non-thermal synchrotron radiation. The outburst flux density is 7.5 × 10 2 µJy at 0.3 keV. Simultaneously, we find 3σ limits on the flux density in the UBV bands (∼ 3 eV) of F ν < 9.0 × 10 2 µJy, indicating that the peak of the synchrotron spectrum must be located between the UV and X-ray bands. In the standard synchrotron model this requires the frequencies corresponding to electrons with the minimum and cooling Lorentz factors to obey ν m ≈ ν c ≈ 3 × 10 16 Hz, while the peak of the spectrum is F ν,p ≈ 3 mJy.The inferred values of ν m and ν c allow us to constrain 47 the outflow parameters and thus to check for consistency with the hypothesis of relativistic expansion. The relevant parameters are the bulk Lorentz factor (γ), the magnetic field (B), and the shock radius (R sh ). From the value of ν c we find γB 3 ≈ 8.3 × 10 3 , and since γ > 1 we conclude that B < 20 G. In addition, using ν m we find ǫ 2 e γ 3 B ≈ 3 × 10 4 ; here ǫ e is the fraction of posts...
The Molonglo Observatory Synthesis Telescope, operating at 843 MHz with a 5 square degree field of view, is carrying out a radio imaging survey of the sky south of declination −30 • . This survey (the Sydney University Molonglo Sky Survey, or SUMSS) produces images with a resolution of 43 ′′ × 43 ′′ cosec |δ| and an rms noise level of ∼ 1 mJy beam −1 . SUMSS is therefore similar in sensitivity and resolution to the northern NRAO VLA Sky Survey (NVSS; Condon et al. 1998). The survey is progressing at a rate of about 1000 square degrees per year, yielding individual and statistical data for many thousands of weak radio sources. This paper describes the main characteristics of the survey, and presents sample images from the first year of observation.
The BIMA Survey of Nearby Galaxies is a systematic imaging study of the 3 mm CO J ¼ 1 0 molecular emission within the centers and disks of 44 nearby spiral galaxies. The typical spatial resolution of the survey is 6 00 or 360 pc at the average distance (12 Mpc) of the sample. The velocity resolution of the CO observations is 4 km s À1 , though most maps are smoothed to 10 km s À1 resolution. For 33 galaxies, multifield observations ensured that a region e190 00 (hDi ¼ 10 kpc) in diameter was imaged. For the remaining 11 galaxies, which had smaller optical diameters and were on average farther away, single-pointing observations imaged a 100 00 diameter (hDi ¼ 11 kpc) region. The sample was not chosen based on CO or infrared brightness; instead, all spirals were included that met the selection criteria of v 2000 km s À1 , ! À20, i 70 , D 25 < 70 0 , and B T < 11:0. The detection rate was 41/44 sources or 93%; of the three nondetections, one (M81) is known to have CO emission at locations outside the survey field of view. Fully sampled single-dish CO data were incorporated into the maps for 24 galaxies; these single-dish data comprise the most extensive collection of fully sampled, two-dimensional single-dish CO maps of external galaxies to date. We also tabulate direct measurements of the global CO flux densities for these 24 sources. For the remaining 20 sources, we collected sensitive single-dish spectra in order to evaluate the large-scale flux recovery. We demonstrate that the measured ratios of flux density recovered are a function of the signal-to-noise of the interferometric data. We examine the degree of central peakedness of the molecular surface density distributions and show that the distributions exhibit their brightest CO emission within the central 6 00 in only 20/44 or 45% of the sample. We show that all three Local Group spiral galaxies have CO morphologies that are represented in SONG, though the Milky Way CO luminosity is somewhat below the SONG average, and M31 and M33 are well below average. This survey provides a unique public database of integrated intensity maps, channel maps, spectra, and velocity fields of molecular emission in nearby galaxies. It also lays the groundwork for extragalactic surveys by more powerful future millimeter-wavelength interferometers like CARMA and ALMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.