Metformin can act in muscle, inhibiting the complex I of the electron transport chain and decreasing mitochondrial reactive oxygen species. Our hypothesis is that the inhibition of complex I can minimize damage oxidative in muscles of hypoinsulinemic rats. The present study investigated the effects of insulin and/or metformin treatment on oxidative stress levels in the gastrocnemius muscle of diabetic rats. Rats were rendered diabetic (D) with an injection of streptozotocin and were submitted to treatment with insulin (D+I), metformin (D+M), or insulin plus metformin (D+I+M) for 7 days. The body weight, glycemic control, and insulin resistance were evaluated. Then, oxidative stress levels, glutathione antioxidant defense system, and antioxidant status were analyzed in the gastrocnemius muscle of hypoinsulinemic rats. The body weight decreased in D+M compared to ND rats. D+I and D+I+M rats decreased the glycemia and D+I+M rats increased the insulin sensitivity compared to D rats. D+I+M reduced the oxidative stress levels and the activity of catalase and superoxide dismutase in skeletal muscle when compared to D+I rats. In conclusion, our results reveal that dual therapy with metformin and insulin promotes more benefits to oxidative stress control in muscle of hypoinsulinemic rats than insulinotherapy alone.
The increase in antioxidant responses promoted by regular physical activity is strongly associated with the attenuation of chronic oxidative stress and physiological mechanisms related to exercise adaptation. The aim of this work was to evaluate and compare how different exercise protocols (HIIE: high-intensity interval exercise, CE: continuous exercise, and RE: resistance exercise) may alter salivary and plasmatic antioxidants and salivary markers of exercise intensity and nitric oxide. Thirteen healthy, trained male subjects were submitted to the three exercise protocols. Blood and saliva samples were collected at the points preexercise, postexercise, and 3 hours postexercise. Antioxidants (total antioxidant capacity, superoxide dismutase and catalase activities, and levels of reduced glutathione and uric acid), markers of exercise intensity (salivary total protein and amylase activity), and salivary nitric oxide were evaluated. As a result, all exercise protocols increased the markers of exercise intensity and nitric oxide. Antioxidant response was increased after exercise, and it was found that a single HIIE session exerts a similar pattern of antioxidant response compared to CE, in plasma and saliva samples, while RE presented minor alterations. We suggest that HIIE may lead to alterations in antioxidants and consequently to the physiological processes related to redox, similar to the CE, with the advantage of being performed in a shorter time. In addition, the antioxidant profile of saliva samples showed to be very similar to that of plasma, suggesting that saliva may be an alternative and noninvasive tool in sports medicine for the study of antioxidants in different physical exercise protocols.
This study tested the effect of isoflavone supplementation in addition to combined exercise training on plasma lipid levels, inflammatory markers and oxidative stress in postmenopausal women. Thirty-two healthy and non-obese postmenopausal women without hormone therapy were randomly assigned to exercise + placebo (PLA; n = 15) or exercise + isoflavone supplementation (ISO; n = 17) groups. They performed 30 sessions of combined exercises (aerobic plus resistance) over ten weeks and consumed 100 mg of isoflavone supplementation or placebo. Blood samples were collected after an overnight fast to analyze the lipid profile, interleukin-6 (IL-6), interleukin-8 (IL-8), superoxide dismutase (SOD), total antioxidant capacity (FRAP), and thiobarbituric acid reactive substances (TBARS), before and after ten weeks of the intervention. There were no differences in the changes (pre vs. post) between groups for any of the inflammatory markers, oxidative stress markers or lipid profile variables. However, interleukin-8 was different between pre- and post-tests (p < 0.001) in both groups (Δ = 7.61 and 5.61 pg/mL) as were cholesterol levels (p < 0.05), with no interaction between groups. The combination of isoflavone supplementation and exercise training did not alter oxidative stress markers in postmenopausal women, but exercise training alone may increase IL-8 and decrease total cholesterol levels.
A polyphenol-enriched fraction from Annona crassiflora fruit peel (Ac-Pef) containing chlorogenic acid, (epi)catechin, procyanidin B2, and caffeoyl-glucoside was investigated against hepatic oxidative and nitrosative stress in streptozotocin-induced diabetic rats. Serum biochemical parameters, hepatic oxidative and nitrosative status, glutathione defense system analysis, and in silico assessment of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the main compounds of Ac-Pef were carried out. Ac-Pef treatment during 30 days decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activities, as well as hepatic lipid peroxidation, protein carbonylation and nitration, inducible nitric oxide synthase level, and activities and expressions of glutathione peroxidase, superoxide dismutase, and catalase. There were increases in antioxidant capacity, glutathione reductase activity, and reduced glutathione level. ADMET predictions of Ac-Pef compounds showed favorable absorption and distribution, with no hepatotoxicity. A. crassiflora fruit peel showed hepatoprotective properties, indicating a promising natural source of bioactive molecules for prevention and therapy of diabetes complications.
Monitoring of blood glucose is an invasive, painful and costly practice in diabetes. Consequently, the search for a more cost-effective (reagent-free), non-invasive and specific diabetes monitoring method is of great interest. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used in diagnosis of several diseases, however, applications in the monitoring of diabetic treatment are just beginning to emerge. Here, we used ATR-FTIR spectroscopy to evaluate saliva of non-diabetic (ND), diabetic (D) and insulin-treated diabetic (D+I) rats to identify potential salivary biomarkers related to glucose monitoring. The spectrum of saliva of ND, D and D+I rats displayed several unique vibrational modes and from these, two vibrational modes were pre-validated as potential diagnostic biomarkers by ROC curve analysis with significant correlation with glycemia. Compared to the ND and D+I rats, classification of D rats was achieved with a sensitivity of 100%, and an average specificity of 93.33% and 100% using bands 1452 cm-1 and 836 cm-1 , respectively. Moreover, 1452 cm-1 and 836 cm-1 spectral bands proved to be robust spectral biomarkers and highly correlated with glycemia (R 2 of 0.801 and 0.788, P < 0.01, respectively). Both PCA-LDA and HCA classifications achieved an accuracy of 95.2%. Spectral salivary biomarkers discovered using univariate and multivariate analysis may provide a novel robust alternative for diabetes monitoring using a non-invasive and green technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.