Three thermal theories of solid propellant combustion, [1, 2, 3], all based on the quasi-steady flame assumption, were subjected to a rapidly rising external pressure field simulating a gun combustion chamber. Transient burning rates were computed by four different numerical solution methods; the best results were obtained with an invariant imbedding scheme. The numerical predictions show that (1) burning rate “runaway” is a numerical difficulty and is not a solution to the models, (2) the final state of an intrinsically unstable model at constant pressure is composed of repeating finite-amplitude spikes, and (3) the dynamic burning rate from a linearly-stable model can be many times greater than r = apn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.