Neuroprotective properties of ketosis may be related to the up-regulation of hypoxia inducible factor 1 (HIF-1α), a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by brain results in elevation of intracellular succinate, a known inhibitor of prolyl-hydroxylase (the enzyme responsible for the degradation of HIF-1α) was deemed as a potential mechanism of ketosis on the up-regulation of HIF-1α. The neuroprotective effect of diet-induced ketosis (3 weeks of feeding a ketogenic diet), as pretreatment, on infarct volume, following reversible middle cerebral artery occlusion (MCAO) and the up-regulation of HIF-1α was investigated. The effect of beta-hydroxybutyrate (BHB), as a pretreatment via intraventricular infusion (4 days of infusion prior to stroke) was also investigated following MCAO. HIF-1α and Bcl-2 (anti-apoptotic protein) protein levels, and succinate content were measured. A 55–70% reduction in infarct volume was observed with BHB infusion or diet-induced ketosis, respectively. HIF-1α and Bcl-2 protein levels increased 3-fold with diet-induced ketosis; BHB infusions resulted in increases in these proteins. As hypothesized, succinate content increased by 55% with diet-induced ketosis and 4-fold with BHB infusion. We conclude, the biochemical link between ketosis and the stabilization of HIF-1α is through the elevation of succinate, and both HIF-1α stabilization and Bcl-2 up-regulation play a role in ketone induced neuroprotection in brain.
It is recognized that brain oxygen deprivation results in increased glycolysis and lactate accumulation. Moreover, glucose metabolism is altered during starvation or diet, resulting in increased plasma ketones (acetoacetate + beta-hydroxybutyrate; BHB). We investigated glucose and lactate adaptation to hypoxia in concurrence with diet-induced ketosis. Male Wistar rats were fed standard (STD), ketogenic (high fat; KG), or carbohydrate-rich (low fat; CHO) diets for 3 wks and then exposed to hypobaric (0.5 ATM) or normobaric atmosphere for 3 wks while on their diets. Lactate, ketones, and glucose concentrations were measured in plasma (mM) and brain tissue (mmol/g). Plasma and tissue ketone levels were elevated up to 12-fold in the KG fed groups compared with other groups (STD and CHO), with the hypoxic KG group reaching the highest levels (2.6 +/- 1.3 mM and 0.3 +/- 0.1 mmol/g; mean +/- SD). Tissue lactate levels in the hypoxic ketotic rats (4.7 +/- 1.3 mM) were comparable with normoxic STD (5.0 +/- 0.7 mM) and significantly lower (ANOVA P < .05) than the hypoxic STD rats (6.1 +/- 1.0 mM). These data indicate that adaptation to hypoxia did not interfere with ketosis, and that ketosis during hypoxia may lower lactate levels in brain, suggesting decreased glycolysis or increased glucose disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.