Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first expansion microscopy method was unable to retain native proteins in the gel and used custom made reagents not widely available. Here, we describe protein retention ExM (proExM), a variant of ExM that anchors proteins to the swellable gel allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validate and demonstrate utility of proExM for multi-color super-resolution (~70 nm) imaging of cells and mammalian tissues on conventional microscopes.
Fumarate hydratase (FH) mutation causes hereditary type 2 papillary renal cell carcinoma (PRCC2). The main effect of FH mutation is fumarate accumulation. The current paradigm posits that the main consequence of fumarate accumulation is HIF-α stabilization. Paradoxically, FH mutation differs from other HIF-α stabilizing mutations, such as VHL and SDH mutations, in its associated tumor types. We identified that fumarate can directly up-regulate antioxidant response element (ARE)-controlled genes. We demonstrated that aldo-keto reductase family 1 member B10 (AKR1B10) is an ARE-controlled gene and is up-regulated upon FH knockdown as well as in FH null cell lines. AKR1B10 overexpression is also a prominent feature in both hereditary and sporadic PRCC2. This phenotype better explains the similarities between hereditary and sporadic PRCC2.
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Objective. Multimodal measurements at the neuronal level allow for detailed insight into local circuit function. However, most behavioral studies focus on one or two modalities and are generally limited by the available technology. Approach. Here, we show a combined approach of electrophysiology recordings, chemical sensing, and histological localization of the electrode tips within tissue. The key enabling technology is the underlying use of carbon fiber electrodes, which are small, electrically conductive, and sensitive to dopamine. The carbon fibers were functionalized by coating with Parylene C, a thin insulator with a high dielectric constant, coupled with selective re-exposure of the carbon surface using laser ablation. Main results. We demonstrate the use of this technology by implanting 16 channel arrays in the rat nucleus accumbens. Chronic electrophysiology and dopamine signals were detected 1 month post implant. Additionally, electrodes were left in the tissue, sliced in place during histology, and showed minimal tissue damage. Significance. Our results validate our new technology and methods, which will enable a more comprehensive circuit level understanding of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.