SummaryReactive oxygen species (ROS) are signaling molecules that regulate plant development and responses to stresses. Mitochondria are the source of most ROS in heterotrophic cells, and mitochondrial complex I and complex III are regarded as the main sites of ROS production in plant mitochondria. Recent studies have demonstrated that succinate dehydrogenase (SDH) also contributes to mitochondrial ROS production. However, the ability of SDH to generate ROS in plants is unclear. The aim of this study was to evaluate the role of SDH in mitochondrial ROS production.Our results demonstrated that SDH is a direct source of ROS in Arabidopsis thaliana and Oryza sativa, and the induction of ROS production by specific SDH inhibitors impaired plant growth. In addition, this effect was accompanied by the down-regulation of cell cycle genes and the up-regulation of stress-related genes.However, the partial inhibition of SDH by a competitive inhibitor decreased ROS production, which was associated with increased shoot and root growth, and prevented the down-regulation of cell cycle genes and the induction of stress-related genes by noncompetitive inhibitors.In conclusion, SDH plays an important role in ROS production, being a direct source of ROS in plant mitochondria and regulating plant development and stress responses.
Postmenopausal women are prone to develop obesity and insulin resistance, which might be related to skeletal muscle mitochondrial dysfunction. In a rat model of ovariectomy (OVX), skeletal muscle mitochondrial function was examined at short- and long-term periods after castration. Mitochondrial parameters in the soleus and white gastrocnemius muscle fibers were analyzed. Three weeks after surgery, there were no differences in coupled mitochondrial respiration (ATP synthesis) with pyruvate, malate, and succinate; proton leak respiration; or mitochondrial reactive oxygen species production. However, after 3 wk of OVX, the soleus and white gastrocnemius muscles of the OVX animals showed a lower use of palmitoyl-carnitine and glycerol-phosphate substrates, respectively, and decreased peroxisome proliferator-activated receptor-γ coactivator-1α expression. Estrogen replacement reverted all of these phenotypes. Eight weeks after OVX, ATP synthesis was lower in the soleus and white gastrocnemius muscles of the OVX animals than in the sham-operated and estrogen-treated animals; however, when normalized by citrate synthase activity, these differences disappeared, indicating a lower muscle mitochondria content. No differences were observed in the proton leak parameter. Mitochondrial alterations did not impair the treadmill exercise capacity of the OVX animals. However, blood lactate levels in the OVX animals were higher after the physical test, indicating a compensatory extramitochondrial ATP synthesis system, but this phenotype was reverted by estrogen replacement. These results suggest early mitochondrial dysfunction related to lipid substrate use, which could be associated with the development of the overweight phenotype of ovariectomized animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.