The impacts of climate change have resulted in the emergence of resilience as the de factor framework for countries seeking to capture the differential and uneven ability to prepare, react, respond and cope with volatile and rapid changes of climate-related stresses. Despite being considered by many researchers the most vulnerable region to the negative effects of climate change, the climate resilience of Sub-Saharan Africa has not been extensively studied. Using countries in Sub-Saharan Africa (SSA) as a study area, this paper constructed a pragmatically based resilience metric called the composite national climate resilience index (CNCRI) that can be used as a tool for the policy word. The inherent variables used to construct the CNCRI were justified and used to measure the resilience of countries in SSA based on five different dimensions. The result indicates that the CNCRI score, 1.05 (least resilient) to 44.8 (most resilient), and the island countries of Mauritius, Seychelles, and Cape Verde are comparatively more resilient than the rest of the countries in the study area. Regionally, Southern Africa is more resilient compared to East, West, and Central Africa. The vulnerability and readiness metric suggested that Cape Verde is the only country in SSA to have low vulnerability and high readiness, while most countries have high vulnerability and low readiness, making them the least resilient countries needing urgent mitigation and adaptation actions. Lastly, finding from this study could provide the policy world with insight for improving the overall ability to prepare and respond to the negative impacts of climate in the study area.
Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development. Applying Harmonized Defense Meteorological Satellite Program-Operational Line-scan System (DMSP-OLS) and the Suomi National Polar-Orbiting Partnership-Visible Infrared Imagery Radiometer Suite (NPP-VIIRS) Nighttime Light (NTL) data, this paper investigated the characteristics of urban landscape in West Africa. Using the harmonized NTL data, spatial comparison and empirical threshold methods were employed to detect urban changes from 1993 to 2018. We examined the rate of urban change and calculated the direction of the urban expansion of West Africa using the center-of-gravity method for urban areas. In addition, we used the landscape expansion index method to assess the processes and stages of urban growth in West Africa. The accuracy of urban area extraction based on NTL data were R 2 = 0.8314 in 2000, R 2 = 0.8809 in 2006, R 2 = 0.9051 in 2012 for the DMSP-OLS and the simulated NPP-VIIRS was R 2 = 0.8426 in 2018, by using Google Earth images as validation. The results indicated that there was a high rate and acceleration of urban landscapes in West Africa, with rates of 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.