The kinetics of the oxidation of phenols by trans-[Ru(VI)(L)(O)(2)](2+) (L = 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O the oxidation of phenol produces the unstable 4,4'- biphenoquinone, as evidenced by a rapid increase and then a slow decrease in absorbance at 398 nm. The first step is first-order in both Ru(VI) and phenol, and rate constants are dependent on [H(+)] according to the relationship k(f) = k(x) + (k(y)K(a)/[H(+)]), where k(x) and k(y) are the rate constants for the oxidation of PhOH and PhO(-), respectively. At 298 K and I = 0.1 M, k(x) = 12.5 M(-1) s(-1) and k(y) = 8.0 x 10(8) M(-1) s(-1). At I = 0.1 M and pH = 2.98, the kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.8 and 0.74 for k(x) and k(y), respectively, and k(f)(C(6)H(5)OH)/k(f)(C(6)D(5)OH) = 1.1. It is proposed that the k(x) step occurs by a hydrogen atom abstraction mechanism, while the k(y) step occurs by an electron-transfer mechanism. In both steps the phenoxy radical is produced, which then undergoes two rapid concurrent reactions. The first is a further three-electron oxidation by Ru(VI) and Ru(V) to give p-benzoquinone and other organic products. The second is a coupling and oxidation process to give 4,4'-biphenoquinone, followed by the decay step, k(s). A similar mechanism is proposed for reactions in CH(3)CN. A plot of log k(x) vs O-H bond dissociation enthalpies (BDE) of the phenols separates those phenols with bulky tert-butyl substituents in the ortho positions from those with no 2,6-di-tert-butyl groups into two separate lines. This arises because there is steric crowding of the hydroxylic groups in 2,6-di-tert-butyl phenols, which react more slowly than phenols of similar O-H BDE but no 2,6-tert-butyl groups. This is as expected if hydrogen atom abstraction but not electron transfer is occurring.
The oxidations of a series of 21 alkylaromatic compounds by trans-[Ru(VI)(L)(O)(2)](2+) (L = 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) have been studied in CH(3)CN. Toluene is oxidized to benzaldehyde and a small amount of benzyl alcohol. 9,10-Dihydroanthracene is oxidized to anthracene and anthraquinone. Other substrates give oxygenated products. The kinetics of the reactions were monitored by UV-vis spectrophotometry, and the rate law is: -d[Ru(VI)]/dt = k(2)[Ru(VI)][ArCH(3)]. The kinetic isotope effects for the oxidation of toluene/d(8)-toluene and fluorene/d(10)-fluorene are 15 and 10.5, respectively. A plot of Delta H(++) versus Delta S(++) is linear, suggesting a common mechanism for all the substrates. In the oxidation of para-substituted toluenes, a linear correlation between log k(2) and sigma(0) values is observed, consistent with a benzyl radical intermediate. A linear correlation between Delta G(++) and Delta H(0) (the difference between the strength of the bond being broken and that being formed in a H-atom transfer step) is also found, which strongly supports a hydrogen atom transfer mechanism for the oxidation of these substrates by trans-[Ru(VI)(L)(O)(2)](2+). The slope of (0.61 +/- 0.06) is in reasonable agreement with the theoretical slope of 0.5 predicted by Marcus theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.