Many fisheries and marine science organizations are working to determine how to meet their missions in the midst of the COVID-19 outbreak. As such, it seems prudent to exchange ideas, share knowledge, and initiate a discussion amongst us. As the scientific leadership team for NOAA Fisheries, we wanted to offer some perspectives. Others are also evaluating the impacts of COVID-19 but from the perspective of addressing tactical, day-to-day concerns of restarting operations for various marine and fisheries-oriented organizations. Thus, it seemed appropriate to us to explore the potential challenges posed by COVID-19, and to purposefully ascertain if there are strategic opportunities for improving how we conduct our operations. We need to find ways to mitigate the effects of COVID-19 on our mission and also to glean information from our responses while in the midst of the crisis. We offer some recommendations to that end, and offer these thoughts not as having solved every problem, but to learn from each other, compare across organizations, and engage in dialogue within our discipline to advance much-needed changes.
The harvest of blue crabs Callinectes sapidus in Chesapeake Bay declined 46% between 1993 and 2001 and remained low through 2008. Because the total market value of this fishery has declined by an average of US $ 3.3 million per year since 1993, the commercial fishery has been challenged to maintain profitability. We developed a bioeconomic simulation model of the Chesapeake Bay blue crab fishery to aid managers in determining which regulations will maximize revenues while ensuring a sustainable harvest. We compared 15 different management scenarios, including those implemented by Maryland and Virginia between 2007 and 2009, that sought to reduce female crab harvest and nine others that used seasonal closures, different size regulations, or the elimination of fishing for specific market categories. Six scenarios produced the highest revenues: the 2008 and 2009 Maryland regulations, spring and fall closures for female blue crabs, and 152‐ and 165‐mm maximum size limits for females. Our most important finding was that for each state the 2008 and 2009 scenarios that implemented early closures of the female crab fishery produced higher revenues than the 2007 scenario, in which no early female closures were implemented. We conclude that the use of maximum size limits for female crabs would not be feasible despite their potentially high revenue, given the likelihood that the soft‐shell and peeler fisheries cannot be expanded beyond their current capacity and the potentially high mortality rate for culled individuals that are the incorrect size. Our model results support the current use of seasonal closures for females, which permit relatively high exploitation of males and soft‐shell and peeler blue crabs (which have high prices) while keeping the female crab harvest sustainable. Further, our bioeconomic model allows for the inclusion of an economic viewpoint along with biological data when target reference points are set by managers.
Intrinsic noise and random synaptic inputs generate a fluctuating current across neuron membranes. We determine the statistics of the output spike train of a biophysical model neuron as a function of the mean and variance of the fluctuating current, when the current is white noise, or when it derives from Poisson trains of excitatory and inhibitory postsynaptic conductances. In the first case, the firing rate increases with increasing variance of the current, whereas in the latter case it decreases. In contrast, the firing rate is independent of variance ͑for constant mean͒ in the commonly used random walk, and perfect integrate-and-fire models for spike generation. The model neuron can be in the current-dominated state, representative of neurons in the in vitro slice preparation, or in the fluctuation-dominated state, representative of in vivo neurons. We discuss the functional relevance of these states to cortical information processing.
Updating stock assessments frequently and ensuring that the most recent fishery-dependent and -independent data are included is a costly endeavor. We use a management strategy evaluation for the mid-Atlantic summer flounder (Paralichthys dentatus) fishery to determine the economic returns to increasing update frequencies and decreasing the data management lag. We simulate the annual acceptable biological catch for the period 2015–2040 under a range of update frequencies and data lags. We calculate present value net economic benefits for the commercial and recreational fisheries for each scenario. Discounting, the timing of harvest quotas, species-specific price flexibilities, and fishing cost response to biomass and quota differences suggest that the benefits gained from frequent updating and reduction in data lags will vary by fishery. For summer flounder, we find the cost of more frequent updating (1 versus 5 years) and reducing the data management lag (1 versus 2 years) are more than compensated for by societal benefits generated by the fishery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.