Endoplasmic reticulum (ER) stress activates a set of signaling pathways, collectively termed the unfolded protein response (UPR). The three UPR branches (IRE1, PERK, and ATF6) promote cell survival by reducing misfolded protein levels. UPR signaling also promotes apoptotic cell death if ER stress is not alleviated. How the UPR integrates its cytoprotective and proapoptotic outputs to select between life or death cell fates is unknown. We found that IRE1 and ATF6 activities were attenuated by persistent ER stress in human cells. By contrast, PERK signaling, including translational inhibition and proapoptotic transcription regulator Chop induction, was maintained. When IRE1 activity was sustained artificially, cell survival was enhanced, suggesting a causal link between the duration of UPR branch signaling and life or death cell fate after ER stress. Key findings from our studies in cell culture were recapitulated in photoreceptors expressing mutant rhodopsin in animal models of retinitis pigmentosa.
Vertebrate photoreceptor cells are the basic sensory apparatus of the retina, capable of converting the energy of absorbed photons into neuronal signals. The proximal portions of mammalian photoreceptor outer segments are synthesized daily by cell bodies, and outer segment tips are shed with a circadian rhythm, resulting in a complete turnover of outer segments about every 9 days. The shed outer segments are phagocytosed by adjacent retinal pigment epithelial (RPE) cells, and metabolites are recycled to photoreceptors. The Royal College of Surgeons (RCS) rat is a widely studied, classic model of recessively inherited retinal degeneration in which the RPE fails to phagocytose shed outer segments, and photoreceptor cells subsequently die. We have used a positional cloning approach to study the rdy (retinal dystrophy) locus of the RCS rat. Within a 0.3 cM genetic inclusion interval, we have discovered a small deletion of RCS DNA that disrupts the gene encoding the receptor tyrosine kinase Mertk. The deletion includes the splice acceptor site upstream of the second coding exon of Mertk and results in a shortened transcript that lacks this exon. The aberrant transcript joins the first and third coding exons, leading to a frameshift and a translation termination signal 20 codons after the AUG. The concordance of these and other data indicate that Mertk is probably the gene for rdy. Our results provide genetic evidence for an essential role of a receptor tyrosine kinase in a specialized form of phagocytosis and suggest a molecular model for ingestion of outer segments by RPE cells.
Recent demonstrations ofsurvival-promoting activity by neurotrophic agents in diverse neuronal systems have raised the possibility of pharmacological therapy for inherited and degenerative disorders of the central nervous system. We have shown previously that, in the retina, basic fibroblast growth factor delays photoreceptor degeneration in Royal College ofSurgeons rats with inherited retinal dystrophy and that the growth factor reduces or prevents the rapid photoreceptor degeneration produced by constant light in the rat. This light-damage model now provides an efficient way to assess quantitatively the survival-promoting activity in Wivo of a number of growth factors and other molecules. We report here that photoreceptors can be significantly protected from the damaging effects of light by intravitreal injection of eight different growth factors, cytokines, and neurotrophins that typically act through several distinct receptor families. In addition to basic fibroblast growth factor, those factors providing a high degree of photoreceptor rescue include brainderived neurotrophic factor, ciliary neurotrophic factor, interleukin 1fl, and acidic fibroblast growth factor; those with less activity include neurotrophin 3, insulin-like growth factor II, and tumor necrosis factor a; those showing little or no protective effect are nerve growth factor, epidermal growth factor, platelet-derived growth factor, insulin, insulin-like growth factor I, heparin, and laminin. Although we used at least one relatively high concentration ofeach agent (the highest available), it is still possible that other concentrations or factor combinations might be more protective. Injecting heparin along with acidic fibroblast growth factor or basic fibroblast growth factor further enhanced the degree of photoreceptor survival and also suppressed the increased incidence of macrophages produced by either factor, especially basic fibroblast growth factor. These results now provide the impetus for determining the normal function in the retina, mechanism(s) of rescue, and therapeutic potential in human eye diseases for each agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.