Endoplasmic reticulum (ER) stress activates a set of signaling pathways, collectively termed the unfolded protein response (UPR). The three UPR branches (IRE1, PERK, and ATF6) promote cell survival by reducing misfolded protein levels. UPR signaling also promotes apoptotic cell death if ER stress is not alleviated. How the UPR integrates its cytoprotective and proapoptotic outputs to select between life or death cell fates is unknown. We found that IRE1 and ATF6 activities were attenuated by persistent ER stress in human cells. By contrast, PERK signaling, including translational inhibition and proapoptotic transcription regulator Chop induction, was maintained. When IRE1 activity was sustained artificially, cell survival was enhanced, suggesting a causal link between the duration of UPR branch signaling and life or death cell fate after ER stress. Key findings from our studies in cell culture were recapitulated in photoreceptors expressing mutant rhodopsin in animal models of retinitis pigmentosa.
Maintenance of endoplasmic reticulum (ER) function is achieved in part through Ire1 (inositol-requiring enzyme 1), a transmembrane protein activated by protein misfolding in the ER. The cytoplasmic nuclease domain of Ire1 cleaves the messenger RNA (mRNA) encoding XBP-1 (X-box–binding protein 1), enabling splicing and production of this active transcription factor. We recently showed that Ire1 activation independently induces the rapid turnover of mRNAs encoding membrane and secreted proteins in Drosophila melanogaster cells through a pathway we call regulated Ire1-dependent decay (RIDD). In this study, we show that mouse fibroblasts expressing wild-type Ire1 but not an Ire1 variant lacking nuclease activity also degrade mRNAs in response to ER stress. Using a second variant of Ire1 that is activated by a small adenosine triphosphate analogue, we show that although XBP-1 splicing can be artificially induced in the absence of ER stress, RIDD appears to require both Ire1 activity and ER stress. Our data suggest that cells use a multitiered mechanism by which different conditions in the ER lead to distinct outputs from Ire1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.