This paper shows the possibility of applying artificial intelligence methods in milling, as one of the most common machining operations. The main goal of the research is to obtain reliable intelligent models for selected output characteristics of the milling process, depending on the input parameters of the process: depth of cut, cutting speed and feed to the tooth. One of the problems is certainly determining the value of input parameters of the processing process depending on the objective function, i.e. the output characteristics of the milling process. The selected objective functions in this paper are the temperature in the cutting zone and arithmetic mean roughness of the machined surface. The paper examines the accuracy of three models based on artificial intelligence, obtained through artificial neural networks, fuzzy logic, and genetic algorithms. Based on the mean percentage error of deviation, conclusions were drawn as to which of the three models is most adequately applied and implemented in appropriate process systems, which are based on artificial intelligence.
Experimental research of cutting force components during dry face milling operations are presented in the paper. The study was provided when milling of ductile cast iron alloyed with copper and its austempered ductile iron after the proper austempering process. In the study, virtual instrumentation designed for cutting forces components monitoring was used. During the research, orthogonal cutting forces components versus time were monitored and relationship of cutting forces components versus speed, feed and depth of cut were determined by artificial neural network and response surface methodology. An analysis was made regarding the consistency of the measured cutting forces and the values obtained from the model supported by an artificial neural network for the investigated interval of the cutting regime. Based on the results, an analysis of the feasibility of the application of austempered ductile iron in the industrial sector with the aspect of machinability as well as the application of the models based on artificial intelligence, was given. At the end of the presentation, the influence of the aforementioned cutting regimes on cutting force components is presented as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.