Flotation tailings rich in carbonate minerals from the tailings deposit of the copper mine Majdanpek (Serbia) were applied for neutralization of the water taken from the extremely acidic Lake Robule (Bor, Serbia). Tests conducted in Erlenmeyer flasks showed that after neutralization of the lake water to pH 7, over 99% of aluminum (Al), iron (Fe), and copper (Cu) precipitated, as well as 92% of Zn and 98% of Pb. In order to remove residual Mn and Ag, the water was further treated with NaOH. After treatment with NaOH, all concentrations of the metals in the lake water samples were below discharge limits for municipal wastewater according to the national legislation of the Republic of Serbia. The results of this work suggest that mining waste could be used for active neutralization of the acid mine drainage. The use of the mining waste instead of lime could reduce the costs of the active treatment of the acid mine drainage.Metals 2020, 10, 16 2 of 15 conducted by Pavlović et al. [8]. They used a laboratory scale cascade line system with three reactors for selective precipitation of metals such as iron, copper, nickel, and arsenic from the synthetic solution that resembled acidic effluent from the open pit mine from the Bor area. The neutralizing agent was 1 M NaOH. Recently, Masuda et al. [9] applied hydrated lime (Ca(OH) 2 ) for neutralization of acidity and selective precipitation of metals from the water collected from Lake Robule using semi-industrial scale equipment for active AMD treatment with two chemical reactors. Stopic et al.[10] used red mud from Greece and Germany firstly for neutralization of AMD (pH value of 2.3) from South Africa and for precipitation of copper. Mwewa et al. [11] performed precipitation of poly-alumino-ferric sulfate coagulant for wastewater treatment using AMD solution from South Africa.There are active and passive methods in the treatment of AMD [12,13]. The conventional method for active neutralization of the acid mine drainage is the application of Ca(OH) 2 . This process is fast and efficient; hydrated lime increases the pH of the solution, resulting in precipitation of the dissolved metals in the form of metal hydroxides [14]. The main disadvantage of this technology is generation of the voluminous sludge. The price of the lime and need for the dehydration, solidification, and stabilization of the sludge after treatment increase the capital and operational costs of the AMD neutralization process [14][15][16]. More recently, passive methods have been attracting more attention due to reduced energy and maintenance costs [13]. With a view toward sustainable development, many studies have focused on finding alternative materials for AMD neutralization. Kaur et al. [17] investigated the application of the waste material from the alumina refining industry (Bayer liquor and precipitates formed by sea water neutralization of the Bayer liquor) to treat AMD from mine pit water. Kefeni et al. [18] reviewed technologies for AMD treatment, including alternative approaches for AMD neutra...
Reuse of waste is one of the main principles of sustainable development and circular economy. Secondary alkaline lead slag is a hazardous waste generated in the recycling process of lead-acid batteries that may be suitable in construction materials. The environmental impact of the use of lead slag as a partial replacement of fine aggregates in the cement-based stabilization/solidification (S/S) process for the preparation of concrete was studied in this paper. Solidified products containing 10%, 15%, 20%, and 25% slag were laboratory tested by unconfined compressive strength (UCS) analyses and the Toxicity Characteristic Leaching Procedure (TCLP). At the same time, the leachability of toxic elements from solidified products with a high percent of slag was evaluated under environmental conditions for during one year. The results of the UCS and TCLP indicated that utilization of this type of slag in cement-based applications may be justified with its controlled addition. However, the described application of the slag was disputed due to the high release of As under high alkaline environmental conditions. Eh-pH analyses and the geochemical modeling using the software PHREEQC were evaluated, as well as the mechanism of pollutant (Pb, As) immobilization (precipitation, adsorption) as a function of pH conditions.
The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.
Since commissioning in 1961, the copper mine Majdanpek, a part of the Mining and Smelting Complex Bor (RTB Bor), produced approximately 378 million tons of flotation tailings. Semiquantitative mineralogical analysis of the flotation tailings revealed significant content of carbonate minerals (approximately 20-25 %), indicating high acid neutralization capacity. Also, approximately 70 % of copper is in the form of the oxide mineral cuprite (Cu 2 O). Copper can be easily leached from cuprite by using sulphuric acid. The RTB Bor copper smelter generates 8.7 m 3 h-1 of extremely acidic waste effluent (142.4 kgm-3 of sulphuric acid, pH-0.464) with relatively high concentrations of dissolved metals and metalloids (Cu, Fe, Zn, Pb and As). The effluent is currently treated with hydrated lime. The present study focused on application of flotation tailings as a neutralizing agent for acidic effluents. Laboratory experiments followed by computer simulation of the industrial process showed that 99% of the acid can be neutralized with flotation tailings in a series of six reactors resulting in the final copper concentration of 1.55 gL-1. Benefits of the proposed process are: lower environmental impact of the process and reduced costs of neutralization of the acidic effluent from the copper smelter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.