The present study compares the practicability, reproducibility, power, and sensitivity of a Myriophyllum aquaticum growth inhibition test in a water-sediment system with the recently accepted Myriophyllum spicatum test in an equivalent testing system and the standard Lemna sp. test. Special consideration was given to endpoints based on M. aquaticum control plant growth and variability of relative growth rate and yield: shoot length, fresh weight, dry weight, and root weight. Sensitivity analysis was based on tests performed with 3,5-dichlorophenol, atrazine, isoproturon, trifluralin, 2,4-dichlorophenoloxyacetic acid, and dicamba. Growth rates for average M. aquaticum control plants were 0.119 d(-1) and 0.112 d(-1), with average estimated doubling time 6.33 d and 6.74 d for relative growth rate fresh weight and shoot length, respectively. Intrinsic variability of M. aquaticum endpoints was low: 12.9%, 12.5%, and 17.8% for relative growth rate shoot length, relative growth rate fresh weight and yield fresh weight, respectively. The power of the test was fairly high. When the most sensitive endpoints were used for comparison, the 2 Myriophyllum species were similarly sensitive, more sensitive (in the case of auxin simulators), or at least equally sensitive as Lemna minor to other tested herbicides. The M. aquaticum 10-d test with a 7-d exposure period in a water-sediment system has acceptable sensitivity and can provide repeatable, reliable, and reproducible results; therefore, it should not be disregarded as a good and representative additional test in environmental risk assessment.
A modified method for the analysis of nicosulfuron, rimsulfuron and prosulfuron was developed and validated by using microwave-assisted extraction (MAE) and ultra-performance liquid chromatography with diode array detection in the ultraviolet region (HPLC-UV-DAD). The most important experimental parameters of extraction procedure and HPLC-UV-DAD technique were optimised in respect to those sulfonylurea herbicides. High recoveries of the microwave-assisted extraction were obtained by using a dichloromethane?acetonitrile mixture (2:1 volume ratio) acidified with acetic acid (0.8 vol.%) with the addition of urea. The mean recoveries at three spiking levels ranged from 97.47 to 98.76% for nicosulfuron, 97.88 to 99.17% for rimsulfuron and from 97.91 to 99.83% for prosulfuron. The limits of detection of nicosulfuron, rimsulfuron and prosulfuron were 0.95, 0.91 and 0.89 ?g kg?1, respectively. The accuracy of the developed method was confirmed by HPLC coupled with tandem mass spectrometry parallel analyses. The developed method was used to investigate the dissipation dynamics of sulfonylurea herbicides in the real field trials in Vojvodina Province, Serbia. The obtained half-lives were 0.05, 0.23 and 0.15 days for recommended dose application of nicosulfuron, rimsulfuron and prosulfuron, respectively. Low residues and short half-life in soil suggested that the risk to sensitive rotational crops after application of those sulfonylurea herbicides is low when they are used in the appropriate dosages. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31072]
Plant protection in contemporary agriculture requires intensive pesticide application. Their use has enabled the increase in yields, simplifying cultivation systems and crop protection strategies, through successful control of harmful organisms. However, it has led to the accumulation of pesticides in agricultural products and the environment, contaminating the ecosystem and causing adverse health effects. Therefore, finding new possibilities for plant protection and effective control of pests without consequences for humans and the environment is imperative for agricultural production. The most important alternatives to the use of chemical plant protection products are biopesticides. However, in order to increase their application and availability, it is necessary to improve efficacy and stability through new active substances and improved formulations. This paper represents an overview of the recent knowledge in the field of biopesticides and discusses the possibilities of the use of some new active substances and the improvement of formulations.
The oriental fruit moth [(Grapholita molesta (Busck, 1916)] represents one of the most significant and destructive pests of peaches in Serbia and worldwide. Its susceptibility to the novel diamide insecticides, cyantraniliprole and chlorantraniliprole, was assessed in this article. The dissipation dynamics and behaviour of these insecticides in the peach fruit were also determined. Field trials were carried out at two localities in the Republic of Serbia (Čerević, Mala Remeta), according to standard EPPO methods. The cyantraniliprole <br />(100 g a. i./l, SE) and chlorantraniliprole (200 g a. i./l, SC) based products were foliar applied at rate of 0.6 and 0.2 l/ha, respectively. The efficacy of the applied products was evaluated by counting the number of fruits damaged by the G. molesta larvae. The high efficacy of cyantraniliprole (89.5–94.1%) and chlorantraniliprole (93.5–95.6%) was achieved at both localities. Right after the drying of the deposit, the concentration of cyantraniliprole in the peach fruits was at the EU maximum residue level (MRL) of 1.5 mg/kg, while the MRL level of 1 mg/kg was achieved after seven days (0.95 mg/kg) for chlorantraniliprole. The cyantraniliprole and chlorantraniliprole half-life dissipation in the peach fruit were 2.50 and 3.15 days. It can be concluded that the high efficacy of the researched insecticides is a good indicator of G. molesta susceptibility in peach orchards.
A rapid and simple method for simultaneous determination of acetamiprid and its metabolite 6-chloronicotinic acid in sweet cherry samples has been developed. This residue analysis method is based on the reversed phase separation on C 18 column with gradient elution. Analytes' determination and quantification were performed by high performance liquid chromatography (HPLC) with diode-array detector and chromatograms were extracted at 230 nm. Extraction efficiency experiments demonstrated the ability of this method to extract neonicotinoids from sweet cherry samples. These insecticides were extracted with a mixture of acetonitril/0.1N ammonium-chloride (8/2, v/v). The average recoveries of acetamiprid and 6-chlornicotinic acid from sweet cherry samples were in the range of 95-101% and 73-83%, respectively, with the associated relative standard deviations (RSDs) <5%. Expanded measurement uncertainties for the analyzed compounds were 2.7 and 3.01%. The limit of quantification (LOQ) was 10 µg/kg and 30 µg/kg for acetamiprid and 6-chloronicotinic acid, respectively. Thus, the developed HPLC/DAD method can be considered a useful tool for sensitive and rapid determination of acetamiprid and 6-chloronicotinic acid. Hence, the method may find further application in the analysis of real sweet cherry samples contaminated with these insecticides at a ppb level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.