The paper refers to a new method to quantify the energy losses due to frictional effects and imperfections in contacts in the case of real industrial tribomechanical systems. Whereby energy losses represent an integral indicator of quality of the real industrial tribomechanical system, in terms of the characteristics of the contact element materials, geometric accuracy, and manufacturing and assembly errors. This paper presents a very complex theoretical model based on the differential equation of motion of a real tribomechanical system down a steep plane. The outputs of the theoretical model are exact mathematical expressions that define the current values of the coefficient of friction and the friction-caused energy losses. The measuring system enables the quantification of current values of the distance traveled per unit of time. Based on a series of experimentally determined values of distance traveled per unit of time, the values of energy losses of the real industrial tribomechanical system are determined using the developed theoretical model and the appropriate software support. The obtained results indicate a high reliability, a large potential and a wide range of possible applications of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.