Surface modification of textile fabrics and leathers is very versatile and allows the products quality improvement. In this work, cotton and leather substrates were pre-treated with cold atmospheric pressure plasma (CAPP) and further coated with TiO2-SiO2-reduced graphene oxide composites in dispersion form. By using a Taguchi scheme, this research evaluated the effect of three significant parameters, i.e., the pre-treatment with CAPP, organic dispersion coating and TiO2-SiO2-reduced graphene oxide (TS/GR) composites, that may affect the morpho-structural properties and photocatalytic activity of modified cotton and leather surfaces. The characteristics of cotton/leather surfaces were evaluated by morphological, structural, optical and self-cleaning ability using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray powder diffraction (XRD), attenuated total reflection–Fourier Transform Infrared spectroscopy (ATR-FTIR) and UV–Vis spectroscopy. The self-cleaning performance of the obtained cotton and leather samples was evaluated by photocatalytic discoloration of berry juice surface stains under UV light irradiation for 12 h. The successfulness of coating formulations was proven by the SEM analysis and UV–Vis spectroscopy. The XRD patterns and ATR-FTIR spectra revealed the cellulose and collagen structures as dominant components of cotton and leather substrates. The CAPP treatment did not damage the cotton and leather structures. The photocatalytic results highlighted the potential of TiO2-SiO2-reduced graphene oxide composites in organic dispersion media, as coating formulations, for further use in the fabrication of innovative self-cleaning photocatalytic cotton and leather products.
The properties of newly synthesized Cu2O/CuO-decorated TiO2/graphene oxide (GO) nanocomposites (NC) were analyzed aiming to obtain insight into their photocatalytic behavior and their various applications, including water remediation, self-cleaning surfaces, antibacterial materials, and electrochemical sensors. The physico-chemical methods of research were photoluminescence (PL), electron paramagnetic resonance (EPR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The solid samples evidenced an EPR signal that can be attributed to the oxygen-vacancy defects and copper ions in correlation with PL results. Free radicals generated before and after UV-Vis irradiation of powders and aqueous dispersions of Cu2O/CuO-decorated TiO2/GO nanocomposites were studied by EPR spectroscopy using two spin traps, DMPO (5,5-dimethyl-1-pyrroline-N-oxide) and CPH (1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine), to highlight the formation of hydroxyl and superoxide reactive oxygen species, respectively. The electrochemical characterization of the NC modified carbon-paste electrodes (CPE) was carried out by CV and DPV. As such, modified carbon-paste electrodes were prepared by mixing carbon paste with copper oxides-decorated TiO2/GO nanocomposites. We have shown that GO reduces the recombination process in TiO2 by immediate electron transfer from excited TiO2 to GO sheets. The results suggest that differences in the PL, respectively, EPR data and electrochemical behavior, are due to the different copper oxides and GO content, presenting new perspectives of materials functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.