Study of Saccharomyces cerevisiae killer toxin-sensitive strains with the deltakre2 phenotype (resistant to toxin K1, sensitive to toxin K2) showed that the phenotype is complemented by the KRE2 gene not only in intact cells but also in spheroplasts, and resistance to K1 thus resides very probably in the plasma membrane. deltakre1 deletant displays a faulty interaction with both K1 and K2 toxin. Hence, Kre1p probably serves as plasma membrane receptor for both toxins. Deletants in seven other genes (GDA1, SAC1, LUV1, KRE23, SAC2, KRE21, ERG4) exhibit different degrees of the deltakre2-like resistance pattern, but the phenotype in deltagda1 and deltasac1 is not connected with a defect in K1 toxin interaction with the plasma membrane, similarly as in deltakre6 and deltakre11 strains with a higher resistance to K2 toxin. Differences between the K1 and K2 killer toxin thus occur on the level of both the plasma membrane and the cell wall.
Killer strains of Saccharomyces cerevisiae producing killer toxin K1 kill sensitive cells but are resistant to their own toxin. It is assumed that in the producer, an effective interaction between the external toxin and its plasma membrane receptor or the final effector is not possible on the grounds of a conformation change of the receptor or its absence in a membrane. Therefore, it is possible that some mutants with defects in intracellular protein transport and degradation can show a suicidal phenotype during K1 toxin production. We have examined these mutants in a collection of S. cerevisiae strains with deletions in various genes transformed by the pYX213+M1 vector carrying cDNA coding for the K1 toxin under the control of the GAL1 promoter. Determination of the quantity of dead cells in colony population showed that (1) the toxin production from the vector did not support full immunity of producing cells, (2) the suicidal phenotype was not connected with a defect in endocytosis or autophagy, (3) deletants in genes VPS1, VPS23, VPS51 and VAC8 required for the protein degradation pathway between the Golgi body and the vacuole exhibited the highest mortality. These results suggest that interacting molecule(s) on the plasma membrane in the producer might be diverted from the secretion pathway to degradation in the vacuole.
The possible correlation between plasma membrane fluidity changes induced by modified cultivation conditions and cell sensitivity to the killer toxin K1 of Saccharomyces cerevisiae were investigated. Cells grown under standard conditions exhibited high toxin sensitivity. Both a membrane fluidity drop and fluidity rise brought about markedly reduced sensitivity to the toxin. These results do not fit the hypothesis of physiological relevance of direct toxin-lipid interaction, suggesting that the essential event in killer toxin action is interaction with membrane protein(s) that can be negatively influenced by any changes of membrane fluidity.
Killer toxin K1 of Saccharomyces cerevisiae kills sensitive cells of the same species by disturbing the ion gradient across the plasma membrane after binding to the receptor at cell wall beta-1,6-glucan. Killer protein K2 is assumed to act by a similar mechanism. To identify the putative plasma membrane receptors for both toxins we mutagenized three sensitive S. cerevisiae strains and searched for clones with killer-resistant spheroplasts. The well diffusion assay identified three phenotypically different groups of clones: clones resistant simultaneously to both toxins, clones with lowered sensitivity to only K1 toxin and those with strongly lowered sensitivity to K2 and partially lowered sensitivity to K1 toxin. These phenotypes are controlled by recessive mutations that belong to at least four different complementation groups. This indicates certain differences at the level of interaction of K1 and K2 toxin with sensitive cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.