<p>Load forecasting has many applications for power systems, including energy purchasing and generation, load switching, contract evaluation, and infrastructure development.</p> <p>Load forecasting is a complex mathematical process characterized by random data and a multitude of input variables.To solve load forecasting, two different approaches are used, the traditional and the intelligent one.Intelligent systems have proved their efficiency in load forecasting domain.</p> <p>Adaptive neuro-fuzzy inference systems (ANFIS) are a combination of two intelligent techniques where we can get neural networks and fuzzy logics advantages simultaneously.</p> In this paper, we will forecast night load peak of Algerian power system using multivariate input adaptive neuro-fuzzy inference system (ANFIS) introducing the effect of the temperature and type of the day as input variables.
Load forecasting has many applications for power systems, including energy purchasing and generation, load switching, contract evaluation, and infrastructure development. In this paper, we will discuss night peak load forecasting of Algerian power system using time series back propagation neural networks, including the effect of the temperature, working days and weekends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.