Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice.
Goal: Current methods for estimating respiratory rate (RR) from the photoplethysmogram (PPG) typically fail to distinguish between periods of high- and low-quality input data, and fail to perform well on independent “validation” datasets. The lack of robustness of existing methods directly results in a lack of penetration of such systems into clinical practice. The present work proposes an alternative method to improve the robustness of the estimation of RR from the PPG. Methods: The proposed algorithm is based on the use of multiple autoregressive models of different orders for determining the dominant respiratory frequency in the three respiratory-induced variations (frequency, amplitude, and intensity) derived from the PPG. The algorithm was tested on two different datasets comprising 95 eight-minute PPG recordings (in total) acquired from both children and adults in different clinical settings, and its performance using two window sizes (32 and 64 seconds) was compared with that of existing methods in the literature. Results: The proposed method achieved comparable accuracy to existing methods in the literature, with mean absolute errors (median, 25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{} $\text {th}$\end{document}–75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\text {th}$\end{document} percentiles for a window size of 32 seconds) of 1.5 (0.3–3.3) and 4.0 (1.8–5.5) breaths per minute (for each dataset respectively), whilst providing RR estimates for a greater proportion of windows (over 90% of the input data are kept). Conclusion: Increased robustness of RR estimation by the proposed method was demonstrated. Significance: This work demonstrates that the use of large publicly available datasets is essential for improving the robustness of wearable-monitoring algorithms for use in clinical practice.
This work describes a novel preprocessing algorithm that can be implemented in conjunction with other RR estimation techniques to improve robustness by specifically considering the quality of the respiratory information.
Respiratory rate (RR) is one of the most informative indicators of a patient's health status. However, automated, non-invasive measurements of RR are insufficiently robust for use in clinical practice. A number of methods have been described in the literature to estimate RR from both photo-plethysmography (PPG) and electrocardiography (ECG) based on three physiological modulations of respiration: amplitude modulation (AM), frequency modulation (FM), and baseline wander (BW). However, the quality of the respiratory information acquired is highly patient-dependent and often too noisy to be used. We address this by proposing respiratory quality indices (RQIs) that quantify the quality of the respiratory signal that can be extracted from each modulation from both PPG and ECG waveforms. Signal quality indices (SQIs) detect artefact in the ECG and PPG, which is relatively straight-forward. RQIs have a different role: they quantify if an individual patient's physiology is modulating the sensor waveforms. We have designed four RQIs based on Fourier transform (RQIFFT), autocorrelation (RQIAC), autoregression (RQIAR), and Hjorth complexity (RQIHC). We validated the approach using PPG and ECG data in the CapnoBase and MIMIC II datasets. We conclude that the novel implementation of an RQI-based preprocessing step has the potential to improve substantially the performance of RR estimation algorithms.
COVID‐19 is a major, urgent, and ongoing threat to global health. Globally more than 24 million have been infected and the disease has claimed more than a million lives as of November 2020. Predicting which patients will need respiratory support is important to guiding individual patient treatment and also to ensuring sufficient resources are available. The ability of six common Early Warning Scores (EWS) to identify respiratory deterioration defined as the need for advanced respiratory support (high‐flow nasal oxygen, continuous positive airways pressure, non‐invasive ventilation, intubation) within a prediction window of 24 h is evaluated. It is shown that these scores perform sub‐optimally at this specific task. Therefore, an alternative EWS based on the Gradient Boosting Trees (GBT) algorithm is developed that is able to predict deterioration within the next 24 h with high AUROC 94% and an accuracy, sensitivity, and specificity of 70%, 96%, 70%, respectively. The GBT model outperformed the best EWS (LDTEWS:NEWS), increasing the AUROC by 14%. Our GBT model makes the prediction based on the current and baseline measures of routinely available vital signs and blood tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.