The objective of this study was to investigate the fate and removal of triclosan (TCS; 5-chloro-2-[2,4-dichloro-phenoxy]-phenol), an antimicrobial agent used in a variety of household and personal-care products, in wastewater treatment systems. This objective was accomplished by monitoring the environmental concentrations of TCS, higher chlorinated derivatives of TCS (4,5-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra II]; 5,6-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra III]; and 4,5,6-trichloro-2-(2,4-dichloro-phenoxy)-phenol [penta]), and a potential biotransformation by-product of TCS (5-chloro-2-[2,4-dicholoro-phenoxy]-anisole [TCS-OMe]) during wastewater treatment. These analytes were isolated from wastewater by using a C18 solid-phase extraction column and from sludge with supercritical fluid CO2. Once the analytes were isolated, they were derivatized to form trimethylsilylethers before quantitation by gas chromatography-mass spectrometry. Recovery of TCS from laboratory-spiked wastewater samples ranged from 79 to 88% for influent, 36 to 87% for final effluent, and 70 to 109% for primary sludge. Field concentrations of TCS in influent wastewater ranged from 3.8 to 16.6 microg/L and concentrations for final effluent ranged from 0.2 to 2.7 microg/L. Removal of TCS by activated-sludge treatment was approximately 96%, whereas removal by trickling-filter treatment ranged from 58 to 86%. The higher chlorinated tetra-II, tetra-III, and penta closans were below quantitation in all of the final effluent samples, except for one sampling event. Digested sludge concentrations of TCS ranged from 0.5 to 15.6 microg/g (dry wt), where the lowest value was from an aerobic digestion process and the highest value was from an anaerobic digestion process. Analysis of these results suggests that TCS is readily biodegradable under aerobic conditions, but not under anaerobic conditions. The higher chlorinated closans were near or below the limit of quantitation in all of the digested sludge samples. Based on results from this study, the chlorinated analogues and biotransformation by-product of TCS are expected to be very low in receiving waters and sludge-amended soils.
The objective of this study was to investigate the fate and removal of triclosan (TCS; 5-chloro-2-[2,4-dichloro-phenoxy]-phenol), an antimicrobial agent used in a variety of household and personal-care products, in wastewater treatment systems. This objective was accomplished by monitoring the environmental concentrations of TCS, higher chlorinated derivatives of TCS (4,5-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra II]; 5,6-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra III]; and 4,5,6-trichloro-2-(2,4-dichloro-phenoxy)-phenol [penta]), and a potential biotransformation by-product of TCS (5-chloro-2-[2,4-dicholoro-phenoxy]-anisole [TCS-OMe]) during wastewater treatment. These analytes were isolated from wastewater by using a C18 solid-phase extraction column and from sludge with supercritical fluid CO2. Once the analytes were isolated, they were derivatized to form trimethylsilylethers before quantitation by gas chromatography-mass spectrometry. Recovery of TCS from laboratory-spiked wastewater samples ranged from 79 to 88% for influent, 36 to 87% for final effluent, and 70 to 109% for primary sludge. Field concentrations of TCS in influent wastewater ranged from 3.8 to 16.6 microg/L and concentrations for final effluent ranged from 0.2 to 2.7 microg/L. Removal of TCS by activated-sludge treatment was approximately 96%, whereas removal by trickling-filter treatment ranged from 58 to 86%. The higher chlorinated tetra-II, tetra-III, and penta closans were below quantitation in all of the final effluent samples, except for one sampling event. Digested sludge concentrations of TCS ranged from 0.5 to 15.6 microg/g (dry wt), where the lowest value was from an aerobic digestion process and the highest value was from an anaerobic digestion process. Analysis of these results suggests that TCS is readily biodegradable under aerobic conditions, but not under anaerobic conditions. The higher chlorinated closans were near or below the limit of quantitation in all of the digested sludge samples. Based on results from this study, the chlorinated analogues and biotransformation by-product of TCS are expected to be very low in receiving waters and sludge-amended soils.
An extensive monitoring study was conducted to determine the fate of linear alkylbenzene sulfonate (LAS) during wastewater treatment and in the environment. Results showed that LAS was highly removed during activated sludge (99.3 ± 0.6%), lagoon (98.5 ± 1.8%), oxidation ditch (98.0 ± 4.2%), and rotating biological contact (96.2 ± 6.1%) treatment, with poorer removals observed at trickling filter (77.4 ± 15.5%) facilities. Concentrations of LAS in anaerobically digested sludge (10,462 ± 5170 μg/g) were one to two orders of magnitude greater than those observed for aerobically digested sludge (152 ± 119 μg/g), illustrating that LAS is rapidly degraded during aerobic sludge treatment. Receiving water concentrations of LAS in rivers of low effluent dilution were generally < 50 μg/L. Elevated river sediment concentrations of LAS were observed only below the outfall of trickling filter treatment plants (59.7‐182.1 μg/g). Alkyl chain lengths of LAS averaged 12.0 carbon units in most environmental compartments, with the exception of sludge solids and river sediments, in which an enrichment of longer chain lengths was observed. Measured concentrations of LAS in river waters under critical low flow conditions were in agreement with PG‐GRiDS model predictions [5], thus supporting the validity of the modeling approach.
This paper brings together over 250 published and unpublished studies on the environmental properties, fate, and toxicity of the four major, high-volume surfactant classes and relevant feedstocks. The surfactants and feedstocks covered include alcohol sulfate or alcohol sulfate (AS), alcohol ethoxysulfate (AES), linear alkylbenzene sulfonate (LAS), alcohol ethoxylate (AE), and long-chain alcohol (LCOH). These chemicals are used in a wide range of personal care and cleaning products. To date, this is the most comprehensive report on these substance's chemical structures, use, and volume information, physical/chemical properties, environmental fate properties such as biodegradation and sorption, monitoring studies through sewers, wastewater treatment plants and eventual release to the environment, aquatic and sediment toxicity, and bioaccumulation information. These data are used to illustrate the process for conducting both prospective and retrospective risk assessments for large-volume chemicals and categories of chemicals with wide dispersive use. Prospective risk assessments of AS, AES, AE, LAS, and LCOH demonstrate that these substances, although used in very high volume and widely released to the aquatic environment, have no adverse impact on the aquatic or sediment environments at current levels of use. The retrospective risk assessments of these same substances have clearly demonstrated that the conclusions of the prospective risk assessments are valid and confirm that these substances do not pose a risk to the aquatic or sediment environments. This paper also highlights the many years of research that the surfactant and cleaning products industry has supported, as part of their environmental sustainability commitment, to improve environmental tools, approaches, and develop innovative methods appropriate to address environmental properties of personal care and cleaning product chemicals, many of which have become approved international standard methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.